Амплитуда и фаза вынужденных колебаний

Механических и электромагнитных).

Резонанс

Рассмотрим зависимость амплитуды Авынужденных колебаний от частоты w. Механические и электромагнитные колебания будем рассматривать одновременно, называя колеблющуюся величину либо смещением (х)колеблющегося тела из положения равновесия, либо зарядом (Q) конденсатора.

Из формулы (147.8) следует, что амплитуда А смещения (заряда) имеет максимум. Чтобы определить резонансную частоту wрез — частоту, при которой амплитуда А смещения (заряда) достигает максимума, — нужно найти максимум функции (147.8), или, что то же самое, минимум подкоренного выражения. Продифференцировав подкоренное выражение по w и приравняв его нулю, получим условие, определяющее wрез

Амплитуда и фаза вынужденных колебаний - student2.ru

Это равенство выполняется при w = 0, Амплитуда и фаза вынужденных колебаний - student2.ru , у которых только лишь положи тельное значение имеет физический смысл. Следовательно, резонансная частота

Амплитуда и фаза вынужденных колебаний - student2.ru (148.1)

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы (частоты вынуждающего переменного напряжения) к частоте, равной или близкой собственной частоте колебательной системы, называется резонансом (соответственно механическим или электрическим). При d2 ≪ w20 значение wрез, практически совпадает с собственной частотой w0 колебательной системы. Подставляя (148.1) в формулу (147.8), получим

Амплитуда и фаза вынужденных колебаний - student2.ru (148.2)

На рис. 210 приведены зависимости амплитуды вынужденных колебаний от частоты при различных значениях d. Из (148.1) и (148.2) вытекает, что чем меньше d, тем выше и правее лежит максимум данной кривой. Если w®0, то все кривые (см. также (147.8)) достигают одного и того же, отличного от нуля, предельного значения x0/w20, которое называют статическим отклонением. В случае механических колебаний x0/w20 = F0/(mw20) в случае электромагнитных — Um/(Lw20).Если w®¥, то все кривые асимптотически стремятся к нулю. Приведенная совокупность кривых называется резонансными кривыми.

Амплитуда и фаза вынужденных колебаний - student2.ru

Рис. 210

Из формулы (148.2) вытекает, что при малом затухании (d2 ≪ w20) резонансная амплитуда смещения (заряда)

Амплитуда и фаза вынужденных колебаний - student2.ru

где Q — добротность колебательной системы (см. (146.8)), x0/w20 — рассмотренное выше статическое отклонение. Отсюда следует, что добротность Qхарактеризует резонансные свойства колебательной системы: чем больше Q, тем больше Арез.

На рис. 211 представлены резонансные кривые для амплитуды скорости (тока).

Амплитуда и фаза вынужденных колебаний - student2.ru

Рис. 211

Амплитуда скорости (тока)

Амплитуда и фаза вынужденных колебаний - student2.ru

максимальна при w20 = w0 и равна x0/(2d), т. е. чем больше коэффициент затухания d, ниже максимум резонансной кривой. Используя формулы (142.2), (146.10) и (143.4), (146.11), получим, что амплитуда скорости при механическом резонансе равна

Амплитуда и фаза вынужденных колебаний - student2.ru

а амплитуда тока при электрическом резонансе

Амплитуда и фаза вынужденных колебаний - student2.ru

Из выражения tgj = 2dw/( w20 - w2) (см. (147.9)) следует, что если затухание в системе отсутствует (d = 0), то только в этом случае колебания и вынуждающая сила (приложенное переменное напряжение) имеют одинаковые фазы; во всех других случаях j ¹ 0.

Зависимость jот wпри разных коэффициентах dграфически представлена на рис. 212, из которого следует, что при изменении w изменяется и сдвиг фаз j. Из формулы (147.9) вытекает, что при w = 0 j = 0, а при w = w0 независимо от значения коэффициента затухания j= p/2, т. е. сила (напряжение) опережает по фазе колебания на p/2. При дальнейшем увеличении w сдвиг фаз возрастает и при w ≫ w j ® p, т.е. фаза колебаний почти противоположна фазе внешней силы (переменного напряжения). Семейство кривых, изображенных на рис. 212, называется фазовыми резонансными кривыми.

Амплитуда и фаза вынужденных колебаний - student2.ru

Рис. 212

Явления резонанса могут быть как вредными, так и полезными. Например, при конструировании машин и различного рода сооружений необходимо, чтобы собственная частота колебаний их не совпадала с частотой возможных внешних воздействий, в противном случае возникнут вибрации, которые могут вызвать серьезные разрушения. С другой стороны, наличие резонанса позволяет обнаружить даже очень слабые колебания, если их частота совпадает с частотой собственных колебаний прибора. Так, радиотехника, прикладная акустика, электротехника используют явление резонанса.

Переменный ток

Установившиеся вынужденные электромагнитные колебания (см. § 147) можно рас сматривать как протекание в цепи, содержащей резистор, катушку индуктивности и конденсатор, переменного тока. Переменный ток можно считать квазистационарным, т. е. для него мгновенные значения силы тока во всех сечениях цепи практически одинаковы, так как их изменения происходят достаточно медленно, а электромагнитные возмущения распространяются по цепи со скоростью, равной скорости света. Для мгновенных значений квазистационарных токов выполняются закон Ома и вытекающие из него правила Кирхгофа, которые будут использованы применительно к переменным токам (эти законы уже использовались при рассмотрении электромагнитных колебаний).

Рассмотрим последовательно процессы, происходящие на участке цепи, содержащем резистор, катушку индуктивности и конденсатор, к концам которого приложено переменное напряжение

Амплитуда и фаза вынужденных колебаний - student2.ru (149.1)

где Um — амплитуда напряжения.

1. Переменный ток, текущий через резистор сопротивлением R (L®0, C®0) (рис. 213, а). При выполнении условия квазистационарности ток через резистор определяется законом Ома:

Амплитуда и фаза вынужденных колебаний - student2.ru

где амплитуда силы тока Im = Um/R.

Амплитуда и фаза вынужденных колебаний - student2.ru

Рис. 213

Для наглядного изображения соотношений между переменными токами и напряжениями воспользуемся методом векторных диаграмм. На рис. 213, б дана векторная диаграмма амплитудных значений тока Im и напряжения Um на резисторе (сдвиг фаз между Im и Um равен нулю).

2. Переменный ток, текущий через катушку индуктивностью L(R®0, С®0) (рис. 214, а).

Амплитуда и фаза вынужденных колебаний - student2.ru

Рис. 214

Если в цепи приложено переменное напряжение (149.1), то в ней потечет переменный ток, в результате чего возникнет э.д.с. самоиндукции (см. (126.3)) ℰs = Амплитуда и фаза вынужденных колебаний - student2.ru . Тогда закон Ома (см. (100.3)) для рассматриваемого участка цепи имеет вид

Амплитуда и фаза вынужденных колебаний - student2.ru Амплитуда и фаза вынужденных колебаний - student2.ru (149.2)

Так как внешнее напряжение приложено к катушке индуктивности, то

Амплитуда и фаза вынужденных колебаний - student2.ru (149.3)

есть падение напряжения на катушке. Из уравнения (149.2) следует, что

Амплитуда и фаза вынужденных колебаний - student2.ru

после интегрирования, учитывая, что постоянная интегрирования равна нулю (так как отсутствует постоянная составляющая тока), получим

Амплитуда и фаза вынужденных колебаний - student2.ru (149.4)

где Im= Um/(wL). Величина

Амплитуда и фаза вынужденных колебаний - student2.ru (149.5)

называется реактивным индуктивным сопротивлением (или индуктивным сопротивлением). Из выражения (149.5) вытекает, что для постоянного тока (w = 0) катушка индуктивности не имеет сопротивления. Подстановка значения Um = wLIm в выражение (149.2) с учетом (149.3) приводит к следующему значению падения напряжения на катушке индуктивности:

Амплитуда и фаза вынужденных колебаний - student2.ru (149.6)

Сравнение выражений (149.4) и (149.6) приводит к выводу, что падение напряжения UCопережает по фазе ток I, текущий через катушку, на p/2, что и показано на векторной диаграмме (рис. 214, б).

3.Переметни ток, текущий через конденсатор емкостью С(R®0, L®0) (рис. 215, а).

Амплитуда и фаза вынужденных колебаний - student2.ru

Рис. 215

Если переменное напряжение (149.1) приложено к конденсатору, то он все время перезаряжается, и в цепи течет переменный ток. Так как все внешнее напряжение приложено к конденсатору, а сопротивлением подводящих проводов можно пренебречь, то

Амплитуда и фаза вынужденных колебаний - student2.ru

Амплитуда и фаза вынужденных колебаний - student2.ru

Амплитуда и фаза вынужденных колебаний - student2.ru

Амплитуда и фаза вынужденных колебаний - student2.ru

Амплитуда и фаза вынужденных колебаний - student2.ru

называется реактивным емкостным сопротивлением (или емкостным сопротивлением). Для постоянного тока (w = 0) RC®¥, т. е. постоянный ток через конденсатор течь не может. Падение напряжения на конденсаторе

Амплитуда и фаза вынужденных колебаний - student2.ru (149.8)

Сравнение выражений (149.7) и (149.8) приводит к выводу, что падение напряжения UC отстает по фазе от текущего через конденсатор тока I на p/2. Это показано на векторной диаграмме (рис. 215, б).

4. Цепь переменного тока, содержащая последовательно включенные резистор, катушку индуктивности и конденсатор. На рис. 216, а представлен участок цепи, содержащий резистор сопротивлением R, катушку индуктивностью Lи конденсатор ем костью С, к концам которого приложено переменное напряжение (149.1).

Амплитуда и фаза вынужденных колебаний - student2.ru

Рис. 216

В цепи возникнет переменный ток, который вызовет на всех элементах цепи соответствующие падения напряжения UR, UL и Uc. На рис. 216, б представлена векторная диаграмма амплитуд падений напряжений на резисторе (UR), катушке (UL) и конденсаторе (UC). Амплитуда Umприложенного напряжения должна быть равна векторной сумме амплитуд этих падений напряжений. Как видно из рис. 216, б, угол jопределяет разность фаз между напряжением и силой тока. Из рисунка следует, что (см. также формулу (147.16))

Амплитуда и фаза вынужденных колебаний - student2.ru (149.9)

Из прямоугольного треугольника получаем

Амплитуда и фаза вынужденных колебаний - student2.ru

откуда амплитуда силы тока имеет значение

Амплитуда и фаза вынужденных колебаний - student2.ru (149.10)

совпадающее с (147.15).

Следовательно, если напряжение в цепи изменяется по закону

U = Umcoswt, то в цепи течет ток

Амплитуда и фаза вынужденных колебаний - student2.ru (149.11)

где jи Iш определяются соответственно формулами (149.9) и (149.10). Величина

Амплитуда и фаза вынужденных колебаний - student2.ru (149.12)

называется полным сопротивлением цепи, а величина

Амплитуда и фаза вынужденных колебаний - student2.ru

- реактивным сопротивлением.

Рассмотрим частный случай, когда в цепи отсутствует конденсатор. В данном случае падения напряжений UR и UL всумме равны приложенному напряжению U. Векторная диаграмма для данного случая представлена на рис. 217, из которого следует, что

Амплитуда и фаза вынужденных колебаний - student2.ru (149.13)

Выражения (149.9) и (149.10) совпадают с (149.13), если в них 1/(wС)=0, т. е. С = ¥. Следовательно, отсутствие конденсатора в цепи означает С = ¥, а не С = 0. Данный вывод можно трактовать следующим образом: сближая обкладки конденсатора до их полного соприкосновения, получим цепь, в которой конденсатор отсутствует (расстояние между обкладками стремится к нулю, а емкость — к бесконечности; см. (94.3)).

Амплитуда и фаза вынужденных колебаний - student2.ru

Рис. 217

Резонанс напряжений

Если в цепи переменного тока, содержащей последовательно включенные конденсатор, катушку индуктивности и резистор (см. рис. 216),

Амплитуда и фаза вынужденных колебаний - student2.ru (150.1)

то угол сдвига фаз между током и напряжением (149.9) обращается в нуль (j = 0), т. е. изменения тока и напряжения происходят синфазно. Условию (150.1) удовлетворяет частота

Амплитуда и фаза вынужденных колебаний - student2.ru (150.2)

В данном случае полное сопротивление цепи Z (149.12) становится минимальным, равным активному сопротивлению Rцепи, и ток в цепи определяется этим сопротивлением, принимая максимальные (возможные при данном Um)значения. При этом падение напряжения на активном сопротивлении равно внешнему напряжению, приложенному к цепи (UR = U),а падения напряжений на конденсаторе (UC) и катушке индуктивности (UL) одинаковы по амплитуде и противоположны по фазе. Это явление называется резонансом напряжений (последовательным резонансом), а частота (150.2) — резонансной частотой. Векторная диаграмма для резонанса напряжений приведена на рис. 218, а зависимость амплитуды силы тока от wуже была дана на рис. 211.

Амплитуда и фаза вынужденных колебаний - student2.ru

Рис. 218

В случае резонанса напряжений

Амплитуда и фаза вынужденных колебаний - student2.ru

подставив в эту формулу значения резонансной частоты и амплитуды напряжений на катушке индуктивности и конденсаторе, получим

Амплитуда и фаза вынужденных колебаний - student2.ru

где Q — добротность контура, определяемая выражением (146.14). Так как добротность обычных колебательных контуров больше единицы, то напряжение как на катушке индуктивности, так и на конденсаторе превышает напряжение, приложенное к цепи. Поэтому явление резонанса напряжений используется в технике для усиления колебания напряжения какой-либо определенной частоты. Например, в случае резонанса на конденсаторе можно получить напряжение с амплитудой QUm (Qв данном случае — добротность контура, которая может быть значительно больше Um). Это усиление напряжения возможно только для узкого интервала частот вблизи резонанс ной частоты контура, что позволяет выделить из многих сигналов одно колебание определенной частоты, т. е. на радиоприемнике настроиться на нужную длину волны. Явление резонанса напряжений необходимо учитывать при расчете изоляции электрических линий, содержащих конденсаторы и катушки индуктивности, так как иначе может наблюдаться их пробой.

Резонанс токов

Рассмотрим цепь переменного тока, содержащую параллельно включенные конденсатор емкостью Си катушку индуктивностью L (рис. 219).

Амплитуда и фаза вынужденных колебаний - student2.ru

Рис. 219

Для простоты допустим, что активное сопротивление обеих ветвей настолько мало, что им можно пренебречь. Если приложенное напряжение изменяется по закону U = Umcoswt (см. (149.1)), то, согласно формуле (149.11), в ветви 1С2течет ток

Амплитуда и фаза вынужденных колебаний - student2.ru

амплитуда которого определяется из выражения (149.10) при условии R = 0 и L = 0:

Амплитуда и фаза вынужденных колебаний - student2.ru

Начальная фаза j1 этого тока по формуле (149.9) определяется равенством

Амплитуда и фаза вынужденных колебаний - student2.ru (151.1)

Аналогично, сила тока в ветви 1L2

Амплитуда и фаза вынужденных колебаний - student2.ru

амплитуда которого определяется из (149.10) при условии R = 0 и С = ¥ (условие отсутствия емкости в цепи, см. § 149):

Амплитуда и фаза вынужденных колебаний - student2.ru

Начальная фаза j2 этого тока (см. (149.9))

Амплитуда и фаза вынужденных колебаний - student2.ru (151.2)

Из сравнения выражений (151.1) и (131.2) вытекает, что разность фаз токов в ветвях 1С2 и 1L2равна j1 - j2 = p, т. е. токи в ветвях противоположны по фазе. Амплитуда силы тока во внешней (неразветвленной) цепи

Амплитуда и фаза вынужденных колебаний - student2.ru

Если w = wрез = 1/ÖLC, то Im1 = Im2 и Im = 0. Явление резкого уменьшения амплитуды силы тока во внешней цепи, питающей параллельно включенные конденсатор и катушку индуктивности, при приближении частоты со приложенного напряжения к резонанс ной частоте соре, называется резонансом токов (параллельным резонансом). В данном случае для резонансной частоты получили такое же значение, как и при резонансе напряжений (см. § 150).

Амплитуда силы тока Im оказалась равна нулю потому, что активным сопротивлением контура пренебрегли. Если учесть сопротивление R, то разность фаз j1 - j2 не будет равна p, поэтому при резонансе токов амплитуда силы тока Im будет отлична от нуля, но примет наименьшее возможное значение. Таким образом, при резонансе токов во внешней цепи токи I1и I2 компенсируются и сила тока I в подводящих проводах достигает минимального значения, обусловленного только током через резистор. При резонансе токов силы токов I1 и I2 могут значительно превышать силу тока I.

Рассмотренный контур оказывает большое сопротивление переменному току с частотой, близкой к резонансной. Поэтому это свойство резонанса токов используется в резонансных усилителях, позволяющих выделять одно определенное колебание из сигнала сложной формы. Кроме того, резонанс токов используется в индукционных печах, где нагревание металлов производится вихревыми токами (см. § 125). В них емкость конденсатора, включенного параллельно нагревательной катушке, подбирается так, чтобы при частоте генератора получился резонанс токов, в результате чего сила тока через нагревательную катушку будет гораздо больше, чем сила тока в подводящих проводах.

Амплитуда и фаза вынужденных колебаний - student2.ru

Наши рекомендации