Описание метода и установки для определения коэффициента вязкости
Лабораторная работа №8
ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА
Цель работы: Познакомиться со способом определения коэффициента вязкости жидкости методом Стокса.
Оборудование: Стеклянный цилиндр с исследуемой жидкостью, измерительная шкала с миллиметровыми делениями, микрометр, секундомер, набор металлических шариков.
- Теоретическая часть
Явления переноса
Явлениями переноса в термодинамически неравновесных системах называются особые необратимые процессы, в результате которых происходит пространственный перенос энергии либо массы, или импульса. К явлениям переноса относятся теплопроводность(обусловлена переносом энергии), диффузия(обусловлена переносом массы) и внутреннее трение (обусловлено переносом импульса).
Внутреннее трение (вязкость)
Механизм возникновения внутреннего трения между параллельными слоями жидкости (газа), движущимися с различными скоростями, заключается в том, что из-за хаотичного теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, а движущегося медленнее - увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.
Сила внутреннего трения между двумя слоями жидкости (газа) определяется по закону Ньютона:
(1)
где - коэффициент динамической вязкости, коэффициент пропорциональности,
- градиент скорости (градиентом скорости называется изменение скорости на единицу длины в направлении, перпендикулярном скоростям v1 и v2 (рис.1),
Рис. 1
– площадь слоя, на который действует сила .
В системе СИ единица измерения :
Из (1) получаем: равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным 1 м/с на 1м, возникает сила внутреннего трения 1 Н на 1м2 поверхности касания слоев.
Исходя из основных представлений молекулярно-кинетической теории, коэффициент вязкости газов равен:
, (2)
где – плотность газа, - средняя длина свободного пробега молекул, - (3)
средняя скорость движения молекул (здесь -универсальная газовая постоянная, - термодинамическая температура, -молярная масса газа).
Из (2) и (3) следует, что коэффициент вязкости газов возрастает с увеличением температуры. Динамический коэффициент вязкости жидкостей примерно в 104 раз больше, чем у газов и уменьшается с возрастанием температуры.
Описание метода и установки для определения коэффициента вязкости
Установка для определения коэффициента вязкости состоит из высокого цилиндрического сосуда, наполненного исследуемой жидкостью (см. рис. 2).
Метод Стокса основан на определении скорости медленно движущихся в жидкости тел сферической формы. Рассмотрим падение тела (в нашем случае – металлического шарика) в вязкой покоящейся жидкости. На тело действуют следующие силы:
1. Сила тяжести, направленная вертикально вниз:
, (4),
где - радиус шарика, – плотность материала шарика, - ускорение свободного падения.
2. Сила Архимеда, направленная вертикально вверх:
, (5)
где Vш – объем шарика, – плотность жидкости,
3. Сила сопротивления (эмпирически установленная
Дж. Стоксом), направленная вертикально Рис.2 вверх:
|
где v – скорость падения тела.
Выражение (6) справедливо при обтекании тела жидкостью (газом) без образования вихрей.
Направление сил показано на рис 2.
|
Вначале скорость движения тела будет возрастать, так как сила тяжести больше суммы сил сопротивления и силы Архимеда.
По второму закону Ньютона:
(7)
По мере увеличения скорости тела сила сопротивления будет также возрастать, наступит такой момент, когда сила тяжести уравновесится суммой сил и , т. е. можно считать, что тело падает с постоянной скоростью. Ускорение станет равным нулю и формула (7) с учетом (4), (5), (6) запишется так:
. (8)
Учитывая, что скорость тела постоянна и равна:
, (9),
где – путь, пройденный в жидкости, t- время, а также, что диаметр тела , для коэффициента вязкости из (8), учитывая (9), получим:
(10)
Выражение (10) справедливо лишь при условии d<<D, где D – диаметр сосуда, в который помещается исследуемая жидкость. На практике также необходимо следить за тем, чтобы при движении тело не приближалось к стенкам сосуда.