Тема. Скорость распространения, длина и частота электромагнитной волны
16.01.2015
Урок 34 (11 класс)
Тема. Скорость распространения, длина и частота электромагнитной волны
Скорость электромагнитных волн. В опытах Герца длина волны составляла несколько десятков сантиметров. Вычислив собственную частоту электромагнитных ко.тебаний вибратора. Герц смог определить скорость электромагнитной волны по формуле = v. Она оказалась приближенно равной скорости света: с 300 000 км/с.
Опытами Герца были блестяще подтверждены предсказания Максвелла. Для излучения электромагнитных волн нужно создать электромагнитные колебания высокой частоты в открытом колебательном контуре. Конец формы
Плотность потока электромагнитного излучения Излучаемые электромагнитные волны несут с собой энергию.Рассмотрим поверхность площадью S, через которую электромагнитные волны переносят энергию. На рисунке 7.5 изображена такая площадка. Прямые линии указывают направления распространения электромагнитных волн. Это лучи —линии, перпендикулярные поверхностям, во всех точках которых колебания происходят в одинаковых фазах. Такие поверхности называются волновыми поверхностями. Плотностью потока электромагнитного излучения / называют отношение электромагнитной энергии W, проходящей за время t через перпендикулярную лучам поверхность площадью S, к произведению площади S на время t: Фактически это мощность электромагнитного излучения (энергия в единицу времени), проходящего через единицу площади поверхности. Плотность потока излучения в СИ выражают в ваттах на квадратный метр (Вт/м2). Иногда эту величину называют интенсивностью волны. Выразим I через плотность электромагнитной энергии и скорость ее распространения с. Выберем поверхность площадью S, перпендикулярную лучам, и построим на ней как на основании цилиндр с образующей c t (рис. 7.6). Объем цилиндра V=Sc t. Энергия электромагнитного поля внутри цилиндра равна произведению плотности энергии на объем: W = c tS. Вся эта энергия за время t пройдет через правое основание цилиндра. Поэтому из формулы (7.1) получаем т. е. плотность потока излучения равна произведению плотности электромагнитной энергии на скорость ее распространения. Найдем зависимость плотности потока излучения от расстояния до источника. Для этого надо ввести еще одно новое понятие. Точечный источник излучения. Источники излучения электромагнитных волн могут быть весьма разнообразными. Простейшим является точечный источник. Источник излучения считается точечным, если его размеры много меньше расстояния, на котором оценивается его действие. Кроме того, предполагается, что такой источник посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью. Точечный источник — такая же идеализация реальных источников, как и другие модели принятые в физике: материальная точка, идеальный газ и т. д. Звезды излучают свет, т. е. электромагнитные волны Так как расстояния до звезд в огромное число раз превы шают их размеры, то именно звезды представляют собой лучшее реальное воплощение точечных источников. Зависимость плотности потока излучения от расстояния до точечного источника.Энергия, которую переносят электромагнитные волны, с течением времени распределяется по все большей и большей поверхности. Поэтому энергия, передаваемая через поверхность единичной площадки за единицу времени, т. е. плотность потока излучения, уменьшается по мере удаления от источника. Поместим точечный источник в центр сферы радиусом R. Площадь поверхности сферы S = 4 R2. Если считать, что источник по всем направлениям за время t излучает суммарную энергию W, то Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника. Зависимость плотности потока излучения от частоты. Излучение электромагнитных волн происходит при ускоренном движении заряженных частиц. Напряженность электрического поля и магнитная индукция электромагнитной волны пропорциональны ускорению излучающих частиц. Ускорение при гармонических колебаниях пропорционально квадрату частоты. Поэтому напряженность электрического поля и магнитная индукция также пропорциональны квадрату частоты: Плотность энергии электрического поля пропорциональна квадрату напряженности поля. Энергия магнитного поля, как это можно показать, пропорциональна квадрату магнитной индукции. Полная плотность энергии электромагнитного поля равна сумме плотностей энергий электрического и магнитного полей. С учетом формулы (7.2) плотность потока излучения Плотность потока излучения пропорциональна четвертой степени частоты. При увеличении частоты колебаний заряженных частиц в 2 раза излучаемая энергия возрастает в 16 раз! В антеннах радиостанций поэтому возбуждают колебания больших частот: от десятков тысяч до десятков миллионов герц. Электромагнитные волны переносят энергию. Плотность потока излучения (интенсивность волны) равна произведению плотности энергии на скорость ее распространения. Интенсивность волны пропорциональна четвертой степени частоты и убывает обратно пропорционально квадрату расстояния от источника. |
Начало формы
Конец формы
Изобретение радио А. С. Поповым В России одним из первых изучением электромагнитных волн занялся преподаватель офицерских курсов в Кронштадте А. С. Попов. Начав с воспроизведения опытов Герца, он затем использовал более надежный и чувствительный способ регистрации электромагнитных волн. В качестве детали, непосредственно «чувствующей» электромагнитные волны, А. С. Попов применил когерер. Этот прибор представляет собой стеклянную трубку с двумя электродами. В трубке помещены мелкие металлические опилки. Принцип действия прибора основан на влиянии электрических разрядов на металлические порошки. В обычных условиях когерер обладает большим сопротивлением, так как: опилки имеют плохой контакт друг с другом. Последовательно с когерером включаются электромагнитное реле и источник постоянного напряжения (рис. 7.7). Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты. Между опилками проскакивают мельчайшие искорки, в результате сопротивление когерера резко падает (в опытах А.С.Попова от 100 000 до 1000 500 Ом, т. е. в 100—200 раз). Попов Александр Степанович (1859—1906) — русский физик, изобретатель радио. Убежденный в возможности связи без проводов при помощи электромагнитных волн, построил первый в мире радиоприемник, применив в его схеме чувствительный элемент — когерер. Во время опытов по радиосвязи с помощью приборов Попова было впервые обнаружено отражение радиоволн от кораблей. ила тока в катушке электромагнитного реле возрастает, и оно включает звонок. Молоточек звонка, ударяя по когереру, встряхивает его и возвращает в исходное состояние. С последним встряхиванием когерера аппарат готов к приему новой волны. Схема приемника А. С. Попова приведена на рисунке 7.7, который был взят из его статьи в «Журнале Русского физико-химического общества». Чтобы повысить чувствительность аппарата, А. С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав тем самым первую в мире приемную антенну для беспроволочной связи. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема. Хотя современные радиоприемники очень мало напоминают приемник А. С. Попова, основные принципы их действия те же, что и в его приборе. Современный приемник такнсе имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания. Как и в приемнике А. С. Попова, энергия этих колебаний не используется непосредственно для приема. Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи. Сейчас такое управление осуществляется с помощью полупроводниковых приборов.
Вначале радиосвязь была установлена на расстоянии 250 м. Неустанно работая над своим изобретением, А. С. Попов вскоре добился дальности связи более 600 м. Затем па маневрах Черноморского ф.пота в 1899 г. ученый установил радиосвязь на расстоянии свыше 20 км, а в 1901 г. дальность радиосвязи была уже 150 км. Важную роль в этом сыграла новая конструкция передатчика. Искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс. Существенно изменились и способы регистрации сигнала. Параллельно звонку был подключен телеграфный аппарат, позволивший вести автоматическую запись сигналов. В 1899 г. была обнаружена возможность приема сигналов с помощью телефона. В начале 1900 г. радиосвязь успешно использовали в ходе спасательных работ в Финском заливе. При участии Л. Попова радиосвязь начали применять на флоте и в армии России. За границей усовершенствование подобных приборов проводилось фирмой, организованной итальянским инженером Г. Маркони. Опыты, поставленные в широком масштабе, позволили осуществитьть радиотелеграфную передачу через Атлантический океан. Впервые радиосвязь была установлена в России А. С. Поповым, создавшим аппаратуру, принимающую и передающую сигналы. | |||
Принципы радиосвязи
Принципы радиосвязи заключаются в следующем. Переменный электрический ток высокой частоты, созданный в передающей антенне, вызывает в окружающем пространстве быстроменяющееся элек тромагнитное поле, которое распространяется в виде электромагнитной волны. Достигая приемной антенны, электромагнитная волна вызывает в ней переменный ток той же частоты, на которой работает передатчик.
Важнейшим этапом в развитии радиосвязи было создание в 1913 г. генератора незатухающих электромагнитных колебаний. Кроме передачи телеграфных сигналов, состоящих из коротких и более продолжительных импульсов («точки» и «тире») электромагнитных волн, стала возможной надежная и высококачественная радиотелефонная связь — передача речи и музыки с помощью электромагнитных волн.
Радиотелефонная связь. При радиотелефонной связи колебания давления воздуха в звуковой волне превращаются с помощью микрофона в электрические колебания той же формы. Казалось бы, если эти колебания усилить и подать в антенну, то можно будет передавать на расстояние речь и музыку с помощью электромагнитных волн.
Однако в действительности такой способ передачи неосуществим. Дело в том, что частота звуковых колебаний мала, а электромагнитные волны низкой (звуковой) частоты имеют малую интенсивность.
Модуляция. Для осуществления радиотелефонной связи необходимо использовать высокочастотные колебания, интенсивно излучаемые антенной. Незатухающие гармонические колебания высокой частоты вырабатывает генератор, например генератор на транзисторе.
Для передачи звука эти высокочастотные колебания изменяют, или, как говорят, модулируют, с помощью электрических колебаний низкой (звуковой) частоты. Можно, например, изменять со звуковой частотой амплитуду высокочастотных колебаний. Этот способ называют амплитудной модуляцией.
На рисунке 7.8 приведены три графика: а) график колебаний высокой частоты, которую называют несущей частотой; б) график колебаний звуковой частоты, т. е. модулирующих колебаний; в) график модулированных по амплитуде колебаний.
Без модуляции мы в лучшем случае хможем контролировать лишь, работает станция или молчит. Без модуляции нет ни те.пеграфной, ни телефонной, ни телевизионной передачи.
Модуляция — медленный процесс. Это такие изменения в высокочастотной колебательной системе, при которых она успевает совершить очень много высокочастотных колебаний, прежде чем их амплитуда изменится заметным образом.
Детектирование. В приемнике из модулированных колебаний высокой частоты выделяются низкочастотные колебания. Такой процесс преобразования сигнала называют детектированием.
Полученный в результате детектирования сигнал соответствует тому звуковому сигналу, который действовал на микрофон передатчика. После усиления колебания низкой частоты могут быть превращены в звук.
Основные принципы радиосвязи представлены в виде блок-схемы на рисунке 7.9.
Амплитудная модуляция высокочастотных колебаний достигается специальным воздействием на генератор высокочастотных незатухающих колебаний. В частности, модуляцию можно осуществить, изменяя на колебательном контуре напряжение, создаваемое источником (см. § 36). Чем больше напряжение на контуре генератора, тем больше .энергии поступает за период от источника в контур. Это приводит к увеличению амплитуды ко.чебаний в контуре. При уменьшении напряжения энергия, поступающая в контур, также уменьшается. Поэтому уменьшается и амплитуда колебаний в контуре.
Если менять напряжение на контуре с частотой, много меньшей частоты колебаний, вырабатываемых генератором, то изменения амплитуды этих колебаний будут приближенно прямо пропорциональны изменениям напряжения. В самом простом устройстве для осуществления амплитудной модуляции включают последовате.тьно с источником постоянного напряжения дополнительный источник переменного напряжения низкой частоты. Этим источником может быть, например, вторичная обмотка трансформатора, если по его первичной обмотке проходит ток звуковой частоты (рис. 7.10). В результате амплитуда колебаний в колебательном контуре генератора будет изменяться в такт с изменениями напряжения на транзисторе. Это и означает, что высокочастотные колебания модулируются по амплитуде низкочастотным сигналом.
Временную развертку модулированных колебаний можно непосредственно наблюдать на экране осциллографа, если подать на него напряжение с колебательного контура.
Кроме амплитудной модуляции, в некоторых случаях применяют частотную модуляцию — изменение частоты колебаний в соответствии с управляющим сигналом. Ее преимуществом является большая устойчивость по отношению к помехам.
Детектирование. Принятый приемником модулированный высокочастотный сигнал даже после усиления не способен непосредственно вызвать колебания мембраны телефона или рупора громкоговорителя со звуковой частотой. Он может вызвать только высокочастотные колебания, не воспринимаемые нашим ухом. Поэтому в приемнике необходимо сначала из высокочастотных модулированных колебаний выделить сигнал звуковой частоты, т. е. провести детектирование.
Детектирование осуществляется устройством, содержащим элемент с односторонней проводимостью — детектор. Таким элементом может быть полупроводниковый диод.
Рассмотрим принцип работы полупроводникового детектора. Пусть этот прибор включен в цепь последовательно с источником модулированных колебаний и нагрузкой (рис. 7.11). Ток в цепи будет идти преимущественно в одном направлении, отмеченном на рисунке стрелкой, так как сопротивление диода в прямом направлении много меньше, чем в обратном. Мы вообще можем пренебречь обратным током и считать, что диод обладает односторонней проводимостью. Вольт-амперную характеристику диода приближенно можно представить в виде ломаной, состоящей из двух прямолинейных отрезков (рис. 7.12).
В цепи (см. рис. 7.11) будет идти пульсирующий ток, график силы тока которого показан на рисунке 7.13. Этот пульсирующий ток сглаживается с помощью фильтра. Простейший фильтр представляет собой конденсатор, присоединенный к нагрузке (рис. 7.14).
Фильтр, работает так. В те моменты времени, когда диод пропускает ток, часть его проходит через нагрузку, а другая часть тока ответвляется в конденсатор, заряжая его (сплошные стрелки на рисунке 7.14). Разветвление тока уменьшает пульсации тока, проходящего через нагрузку. Зато в промежутке между импульсами, когда диод заперт, конденсатор частично разряжается через нагрузку. Поэтому в интервале между импульсами ток через нагрузку идет в ту же сторону (штриховые стрелки на рисунке 7.14). Каждый новый импульс подзаряжает конденсатор. В результате этого через нагрузку идет ток звуковой частоты, форма колебаний которого почти точно воспроизводит форму низкочастотного сигнала на передающей станции (рис. 7.15).
Более сложные фильтры сглаживают небольшие высокочастотные пульсации, и колебания звуковой частоты происходят более плавно.
Простейший радиоприемник. Простейший радиоприемник состоит из колебательного контура, связанного с антенной, и подключенной к нему цепи, состоящей из детектора, конденсатора и телефона (рис. 7.16). В колебательном контуре радиоволной возбуждаются модулированные колебания. Катушки телефонов выполняют роль нагрузки. Через них идет ток звуковой частоты. Небольшие пульсации высокой частоты не сказываются заметно на колебаниях мембраны и не воспринимаются на слух.
Модулировать можно амплитуду или частоту колебаний. Проще всего осуществляется амплитудная модуляция.
При детектировании переменный ток выпрямляется и высокочастотные пульсации сглаживаются фильтром.