Идеальный газ. Основное уравнение МКТ идеального газа. Температура и ее измерение. Абсолютная температура

План ответа

1. Понятие идеального газа, свойства. 2. Объ­яснение давления газа. 3. Необходимость измерения температуры. 4. Физический смысл температуры. 5. Температурные шкалы. 6. Абсолютная темпера­тура.

Для объяснения свойств вещества в газообраз­ном состоянии используется модель идеального газа. Идеальным принято считать газ, если:

а) между мо­лекулами отсутствуют силы притяжения, т. е. моле­кулы ведут себя как абсолютно упругие тела;

б) газ очень разряжен, т. е. расстояние между молекулами намного больше размеров самих молекул;

в) тепловое равновесие по всему объему достигается мгновенно. Условия, необходимые для того, чтобы реальный газ обрел свойства идеального, осуществляются при со­ответствующем разряжении реального газа. Некото­рые газы даже при комнатной температуре и атмо­сферном давлении слабо отличаются от идеальных.

Основными параметрами идеального газа являются давление, объем и температура.

Одним из первых и важных успехов МКТ было качественное и количественное объяснение давления газа на стенки сосуда.Качественное объяснение за­ключается в том, что молекулы газа при столкнове­ниях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела и передают свои импульсы стенкам сосуда.

На основании использования основных поло­жений молекулярно-кинетической теории было по­лучено основное уравнение МКТ идеального газа, ко­торое выглядит так: р = 1/3 т0пv2.

Здесь р — давление идеального газа, m0

масса молекулы, п — концентрация молекул, v2 — средний квадрат скорости молекул.

Обозначив среднее значение кинетической энергии поступательного движения молекул идеаль­ного газа Еk получим основное уравнение МКТ иде­ального газа в виде: р = 2/3nЕk.

Однако, измерив только давление газа, невоз­можно узнать ни среднее значение кинетической энергии молекул в отдельности, ни их концентра­цию. Следовательно, для нахождения микроскопиче­ских параметров газа нужно измерение какой-то еще физической величины, связанной со средней кинети­ческой энергией молекул. Такой величиной в физике является температура.Температура — скалярная физическая величина, описывающая состояние тер­модинамического равновесия (состояния, при кото­ром не происходит изменения микроскопических па­раметров). Как термодинамическая величина температура характеризует тепловое состояние системы и измеряется степенью его отклонения от принятого за нулевое, как молекулярно-кинетическая величина характеризует интенсивность хаотического движения молекул и измеряется их средней кинетической энергией.

Ek = 3/2 kT, где k = 1,38 • 10-23 Дж/К и назы­ваетсяпостоянной Больцмана.

Температура всех частей изолированной си­стемы, находящейся в равновесии, одинакова. Изме­ряется температура термометрами в градусах раз­личных температурных шкал. Существует абсолют­ная термодинамическая шкала (шкала Кельвина) и различные эмпирические шкалы, которые отличают­ся начальными точками. До введения абсолютной шкалы температур в практике широкое распростра­нение получила шкала Цельсия (за О °С принята точка замерзания воды, за 100 °С принята точка ки­пения воды при нормальном атмосферном давлении).

Единица температуры по абсолютной шкале называетсяКельвином и выбрана равной одному гра­дусу по шкале Цельсия 1 К = 1 °С. В шкале Кельви­на за ноль принят абсолютный ноль температур, т. е. температура, при которой давление идеального газа при постоянном объеме равно нулю. Вычисления да­ют результат, что абсолютный ноль температуры ра­вен -273 °С. Таким образом, между абсолютной шкалой температур и шкалой Цельсия существует связь Т = t °С + 273. Абсолютный ноль температур недостижим, так как любое охлаждение основано на испарении молекул с поверхности, а при приближе­нии к абсолютному нулю скорость поступательного движения молекул настолько замедляется, что испарение практически прекращается. Теоретически при абсолютном нуле скорость поступательного движения молекул равна нулю, т. е. прекращается тепловое движение молекул.

2 Задача

Луч света падает на поверхность воды под углом 40°. Под каким углом должен упасть луч на поверхность стекла, чтобы угол преломления оказался тем же, что и в первом случае?

Дано: ∠α= 40°; nводы = 1,33; ncт= 1,6; ∠β1 = ‹β2; ∠α2 _- ?

Решение:

Среда 1 – вода : n1 = sinα1 / sinβ1

Среда 2 – стекло : n2 = sinα2 / sinβ2

По условию задачи ∠β1 = ∠β2 , значит , sin β1= sin β2. Из первой формулы : sin β1 = sinα1/n1

Аналогично sinβ2= sinα2/n2

Приравнивая оба выражения, получаем : sinα1/n1 = sinα2/n2

Отсюда находим : sin α2 =n2× sinα1/n1; sinα2 = 1,6×sin40° / 1,33 = 0,77

По таблице синусов находим : ∠α= 50°.

Ответ: ∠α= 50°.

Билет №8

Наши рекомендации