Магнитные моменты электронов и атомов
В отсутствие внешнего магнитного поля магнитные моменты атомов вещества ориентированы обычно беспорядочно, так что создаваемые ими магнитные поля компенсируют друг друга. При наложении внешнего магнитного поля атомы стремятся сориентироваться своими магнитными моментами по направлению внешнего магнитного поля, и тогда компенсация магнитных моментов нарушается, тело приобретает магнитные свойства – намагничивается. Большинство тел намагничивается очень слабо и величина индукции магнитного поля B в таких веществах мало отличается от величины индукции магнитного поля в вакууме . Если магнитное поле слабо усиливается в веществе, то такое вещество называется парамагнетиком:
( , , , , , , Li, Na);
если ослабевает, то это диамагнетик:
(Bi, Cu, Ag, Au и др.).
Но есть вещества, обладающие сильными магнитными свойствами. Такие вещества называются ферромагнетиками:
(Fe, Co, Ni и пр.).
Эти вещества способны сохранять магнитные свойства и в отсутствие внешнего магнитного поля, представляя собой постоянные магниты.
Все тела при внесении их во внешнее магнитное поле намагничиваются в той или иной степени, т.е. создают собственное магнитное поле, которое накладывается на внешнее магнитное поле.
Магнитные свойства вещества определяются магнитными свойствами электронов и атомов.
Магнетики состоят из атомов, которые, в свою очередь, состоят из положительных ядер и, условно говоря, вращающихся вокруг них электронов.
Электрон, движущийся по орбите в атоме эквивалентен замкнутому контуру с орбитальным током:
где е – заряд электрона, ν – частота его вращения по орбите:
.
Орбитальному току соответствует орбитальный магнитный моментэлектрона
, | (6.1.1) |
где S – площадь орбиты, – единичный вектор нормали к S, – скорость электрона. На рисунке 6.1 показано направление орбитального магнитного момента электрона.
Рис. 6.1
Электрон, движущийся по орбите, имеет орбитальный момент импульса , который направлен противоположно по отношению к и связан с ним соотношением
, | (6.1.2) |
Здесь коэффициент пропорциональности γ называется гиромагнитным отношениеморбитальных моментов и равен:
, | (6.1.3) |
где m – масса электрона.
Кроме того, электрон обладает собственным моментом импульса , который называется спином электрона
, | (6.1.4) |
где , – постоянная Планка
Спину электрона соответствует спиновый магнитный момент электрона , направленный в противоположную сторону:
, | (6.1.5) |
Величину называют гиромагнитным отношением спиновых моментов
, | (6.1.6) |
Проекция спинового магнитного момента электрона на направление вектора индукции магнитного поля может принимать только одно из следующих двух значений:
, | (6.1.7) |
где – квантовый магнитный момент электрона – магнетон Бора.
Орбитальным магнитным моментом атома называется геометрическая сумма орбитальных магнитных моментов всех электронов атома
, | (6.1.8) |
где Z – число всех электронов в атоме – порядковый номер элемента в периодической системе Менделеева.
Орбитальным моментом импульса L атома называется геометрическая сумма моментов импульса всех электронов атома:
, | (6.1.9) |
10. Диамагнетиками называются вещества, в которых внешнее магнитное поле ослабляется. Это значит, что магнитные поля атомов таких веществ во внешнем магнитном поле направлены противоположно внешнему магнитному полю (µ < 1).
Для понимания природы диамагнетизмарассмотрим движение электрона, который влетает со скоростью v в однородное магнитное поле перпендикулярно вектору В магнитного поля.
Под действием силы Лоренца электрон станет двигаться по окружности, направление его вращения определяется направлением вектора силы Лоренца. Возникший круговой ток создаёт своё магнитное поле В'. Это магнитное поле В' направлено противоположно магнитному полю В. Следовательно, любое вещество, содержащее свободно движущиеся заряженные частицы, должно обладать диамагнитными свойствами.
Хотя в атомах вещества электроны не свободны, изменение их движения внутри атомов под действием внешнего магнитного поля оказывается эквивалентным круговому движению свободных электронов. Поэтому любое вещество в магнитном поле обязательно обладает диамагнитными свойствами.
Однако диамагнитные эффекты очень слабы и обнаруживаются только у веществ, атомы или молекулы которых не обладают собственным магнитным полем.
Вещества, в которых внешнее магнитное поле усиливается в результате сложения с магнитными полями электронных оболочек атомов вещества из-за ориентации атомных магнитных полей в направлении внешнего магнитного поля, называютсяпарамагнетиками(µ > 1).
Парамагнетики очень слабо усиливают внешнее магнитное поле. Магнитная проницаемость парамагнетиков отличается от единицы лишь на доли процента. Например, магнитная проницаемость платины равна 1, 00036. Из – за очень малых значений магнитной проницаемости парамагнетиков и диамагнетиков их влияние на внешнее поле или воздействие внешнего поля на парамагнитные или диамагнитные тела очень трудно обнаружить. Поэтому в обычной повседневной практике, в технике парамагнитные и диамагнитные вещества рассматриваются как немагнитные, то есть вещества, не изменяющие магнитное поле и не испытывающие действия со стороны магнитного поля.
Вещества, значительно усиливающие внешнее магнитное поле, называются ферромагнетиками (никель, железо, кобальт и др.).
Намагни́ченность — векторная физическая величина, характеризующая магнитное состояние макроскопического физического тела. Обозначается обычно М. Определяется как магнитный момент единицы объёма вещества:
Здесь, M — вектор намагниченности; — вектор магнитного момента; V — объём.
В общем случае (случае неоднородной, по тем или иным причинам, среды) намагниченность выражается как
и является функцией координат. Где есть суммарный магнитный момент молекул в объеме dV Связь между M и напряженностью магнитного поля H вдиамагнитных и парамагнитных материалах, обычно линейна (по крайней мере, при не слишком больших величинах намагничивающего поля):
где χm называют магнитной восприимчивостью. В ферромагнитных материалах нет однозначной связи между M и H из-за магнитного гистерезиса и чтобы описать зависимость используют тензор магнитной восприимчивости.
Магнитная индукция определяется через намагниченность как:
(в системе СИ)
Магнитное поле в веществе. Намагниченность.
Проводники, по которым текут токи, создающие магнитное поле, находятся в вакууме. Если несущие ток проводники находятся в какой–либо среде, магнитное поле существенным образом изменяется. Это объясняется тем, что всякое вещество является магнетиком, т. е. способно под действием магнитного поля приобретать магнитный момент (намагничиваться). Намагниченное вещество создает магнитное поле В', которое накладывается на обусловленное токами поле В0. Оба поля в сумме дают результирующее поле:
В = В0+В’ (43.1)
Истинное (микроскопическое) поле в магнетике сильно изменяется в пределах межмолекулярных расстояний. Под В подразумевается усредненное (макроскопическое) поле.
Для объяснения намагничения тел Ампер предположил, что в молекулах вещества циркулируют круговые токи. Каждый такой ток обладает магнитным моментом и создает в окружающем пространстве магнитное поле.
В отсутствие внешнего поля молекулярные токи ориентированы беспорядочным образом, вследствие чего обусловленное ими результирующее поле равно нулю. В силу хаотической ориентации магнитных моментов отдельных молекул суммарный магнитный момент тела также равен нулю. Под действием поля магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, вследствие чего магнетик намагничивается – его суммарный магнитный момент становится отличным от нуля. Магнитные поля отдельных молекулярных токов в этом случае уже не компенсируют друг друга и возникает поле В'.
Намагничение магнетика естественно характеризовать магнитным моментом единицы объема. Эту величину называют вектором намагничивания и обозначают J. Если магнетик намагничен неоднородно, вектор намагничения в данной точке определяется следующим выражением:
(43.2)
где ΔV–физически бесконечно малый объем, взятый в окрестности рассматриваемой точки, рm – магнитный момент отдельной молекулы. Суммирование производится по всем молекулам, заключенным в объеме ΔV.