Энергия, плотность энергии магнитного поля.

Рассмотрим контур индуктивностью L, по которому протекает ток I. С этим контуром сцеплен магнитный поток Ф=LI, поскольку индуктивность контура неизменна, то при изменении тока на dI магнитный поток изменяется на dФ=LdI. Но для изменения магнитного потока на величину dФ следует совершить работу dА=IdФ=LIdI. Тогда работа по созданию магнитного потока Ф равна

Энергия, плотность энергии магнитного поля. - student2.ru

Значит, энергия магнитного поля, которое связано с контуром,

Энергия, плотность энергии магнитного поля. - student2.ru (1)

Энергию магнитного поля можно рассматривать как функцию величин, которые характеризуют это поле в окружающем пространстве. Для этого рассмотрим частный случай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (1) формулу индуктивности соленоида, найдем

Энергия, плотность энергии магнитного поля. - student2.ru

Так как I=Bl/(μ0μN) и В=μ0μH , то

Энергия, плотность энергии магнитного поля. - student2.ru (2)

где Sl = V — объем соленоида.

Магнитное поле внутри соленоида однородно и сосредоточено внутри него, поэтому энергия (2) заключена в объеме соленоида и имеет с нем однородное распределение с постоянной объемной плотностью

Энергия, плотность энергии магнитного поля. - student2.ru (3)

Формула (3) для объемной плотности энергии магнитного поля имеет вид, аналогичный выражению для объемной плотности энергии электростатического поля, с тем отличием, что электрические величины заменены в нем магнитными. Формула (3) выводилась для однородного поля, но она верна и для неоднородных полей. Формула (3) справедлива только для сред, для которых линейная зависимость В от Н , т.е. оно относится только к пара- и диамагнетикам.

Намагниченность. Магнитное поле в веществе.

Намагниченность — векторная физическая величина, характеризующая магнитное состояние макроскопического физического тела. Обозначается обычно М или J. Определяется как магнитный момент единицы объёма вещества:

Энергия, плотность энергии магнитного поля. - student2.ru

Здесь, J — вектор намагниченности; Энергия, плотность энергии магнитного поля. - student2.ru — вектор магнитного момента; V — объём.

В общем случае (случае неоднородной, по тем или иным причинам, среды) намагниченность выражается как

Энергия, плотность энергии магнитного поля. - student2.ru

и является функцией координат. Где Энергия, плотность энергии магнитного поля. - student2.ru есть суммарный магнитный момент молекул в объеме dV Связь между J и напряженностью магнитного поля H вдиамагнитных и парамагнитных материалах, обычно линейна (по крайней мере, при не слишком больших величинах намагничивающего поля):

Энергия, плотность энергии магнитного поля. - student2.ru

где χm называют магнитной восприимчивостью. В ферромагнитных материалах нет однозначной связи между J и H из-за магнитного гистерезиса и чтобы описать зависимость используют тензор магнитной восприимчивости.

Магнитная индукция определяется через намагниченность как:

Энергия, плотность энергии магнитного поля. - student2.ru (в системе СИ)

Магнитное поле в веществе.

До сих пор рассматривалось магнитное поле, которое создавалось проводниками с током или движущимися электрическими зарядами, находящимися в вакууме. Если же магнитное поле создается не в вакууме, а в какой-то другой среде, то магнитное поле изменяется. Это объясняется тем, что различные вещества, помещенные в магнитное поле, намагничиваются и сами становятся источниками магнитного поля. Вещества, способные намагничиваться в магнитном поле, называются магнетиками. Намагниченное вещество создает магнитное поле с индукцией Энергия, плотность энергии магнитного поля. - student2.ru , которое накладывается на магнитное поле с индукцией Энергия, плотность энергии магнитного поля. - student2.ru , обусловленное токами. Оба поля в сумме дают результирующее поле, магнитная индукция которого равна

Энергия, плотность энергии магнитного поля. - student2.ru .

Для объяснения намагничивания тел Ампер предположил, что в молекулах вещества циркулируют круговые токи. Каждый такой ток обладает магнитным моментом и создает в окружающем пространстве магнитное поле. В отсутствие внешнего магнитного поля молекулярные токи ориентированы хаотически, поэтому суммарный магнитный момент вещества равен нулю. В магнитном поле молекулярные токи ведут себя подобно рамке с током, то есть ориентируются так, чтобы магнитные моменты были преимущественно ориентированы вдоль магнитного поля, вследствие чего магнетик намагничивается. Природа молекулярных токов стала понятной только в начале ХХ в., когда Резерфордом было установлено, что атомы всех веществ состоят из положительно заряженного ядра и движущихся вокруг него отрицательно заряженных электронов. В 1913 г. Нильс Бор развил теорию, согласно которой электроны в атомах движутся по круговым орбитам. Это движение можно рассматривать как круговой ток, обладающий магнитным моментом, называемым орбитальным магнитным моментом электрона. Позднее было показано, что теория Бора имеет ограниченную применимость и во многих отношениях совершенно неверна. Тем не менее, согласно современным представлениям, электроны в атомах обладают орбитальным магнитным моментом. Кроме того, электрон имеет собственный магнитный момент, называемый спиновым магнитным моментом. Магнитный момент многоэлектронного атома будет векторной суммой орбитальных и спиновых моментов всех его электронов.

Именно взаимодействием магнитных моментов атомов с внешним магнитным полем и обусловлено намагничивание веществ и, следовательно, изменение магнитного поля в веществе. Для описания этого поля вводят величину m, которая называется относительной магнитной проницаемостью или просто магнитной проницаемостью вещества. Магнитная проницаемость Энергия, плотность энергии магнитного поля. - student2.ru показывает, во сколько раз значение магнитной индукции в веществе отличается от ее значения в вакууме при тех же значениях токов, создающих магнитное поле. Магнитная проницаемость зависит от рода вещества и от его состояния, например, от температуры.

Наши рекомендации