Реальны ли центробежные силы?
Мы уже знаем, что так называемые силы инерции, которые мы добавляем к реально действующим силам якобы для облегчения решения задач, на самом деле не существуют. Слово «якобы» автор употребил потому, что иногда это «облегчение» оборачивается такой ошибкой, что лучше бы и не использовать этих сил инерции вообще. Тем более сейчас, когда всю счетную работу выполняют компьютеры, а им почти все равно, облегчили мы расчеты или нет.
Так вот для вращательного движения вопрос с силами инерции обстоит гораздо запутаннее, чем для прямолинейного. И последствия ошибок могут быть хуже. Чего стоят хотя бы пресловутые центробежные силы? Почти каждый из нас, включая даже научных работников, думает, что такие силы есть и действуют они на вращающуюся точку или тело. И бывают очень обескуражены, когда узнают, что их нет и быть не может.
Приведем простейший, но тем не менее убийственный для этих сил пример. Известно, что Луна вращается вокруг Земли. Спрашивается, действуют ли на нее центробежные силы? Спросите, пожалуйста, об этом своих товарищей, родителей, знакомых. Большинство ответит: «Действуют!» Тогда вы поспорьте с ними на что хотите и начинайте доказывать, что этого не может быть.
Основных довода – два. Первый: если бы на Луну действовала центробежная сила (то есть сила, направленная от центра вращения наружу), то она могла бы действовать только со стороны Земли, так как других тел поблизости нет. Думаю, что напоминать о том, что силы действуют на тела только со стороны других тел, а не «просто так», уже не надо. А если все так, то, значит, Земля не притягивает, а отталкивает Луну – от себя наружу. Между тем, как мы знаем, существует закон всемирного тяготения, а не отталкивания. Поэтому на Луну может действовать со стороны Земли только одна-единствен-ная сила – притяжения P, направленная точно наоборот – от Луны к Земле. Такая сила называется центростремительной, и она реально есть, она-то и сворачивает Луну с прямолинейного инерционного пути и заставляет вращаться вокруг Земли. А центробежной силы, извините, нет (рис. 54).
Второй довод. Он для тех, кто не знает о существовании закона всемирного тяготения или забыл его. Тогда если бы на Луну действовала центробежная сила (естественно, со стороны Земли, так как других тел, как мы уже знаем, поблизости нет), то Луна не стала бы вращаться вокруг Земли, а улетела бы прочь. Если на Луну не действовало бы вообще никаких сил, то она спокойно пролетела бы мимо Земли по инерции, то есть по прямой (мы же забыли о всемирном тяготении!). А если бы со стороны Земли на Луну действовала центробежная сила, то Луна, подлетая к Земле, свернула бы в сторону и под действием этой силы улетела бы навсегда в космическое пространство. Только бы мы ее и видели! Но раз этого не происходит, стало быть, центробежной силы нет. Вы выиграли спор, причем в любом случае. А появилась эта центробежная сила оттуда же, откуда и силы инерции в прямолинейном движении – из принципа Даламбера. Здесь, во вращательном движении, этот принцип еще более облегчает решение задач, чем в прямолинейном. Еще бы, прикладываем к существующей центростремительной силе несуществующую центробежную – и Луна как бы зависает на месте! Делайте с ней, что хотите, определяйте ускорения, скорости, радиусы орбиты, периоды обращения и все остальное. Хотя все это можно определить и без использования принципа Даламбера.
Рис. 55. Занос автомобиля на повороте (схема ГАИ)
Но Луна Луной, это все пустяки по сравнению с получением водительских прав в ГАИ. Автор преподает на автомобильном факультете, где все его студенты обязаны получать права и все стонут от ГАИвской физики. Жалуются, что в ГАИ им объясняют движение автомобиля на повороте так: «Поскольку при повороте на автомобиль действует сила тяги, направленная вперед по касательной, и центробежная сила, действующая наружу, то занести машину может только наружу от касательной» (см. схему на рис. 55). Но так как вместо центробежной на автомобиль действует центростремительная сила, направленная точно наоборот, то занесет машину внутрь от касательной! Если, конечно, не учитывать других причин – увода колес, переворачивания, бокового ветра, удара сбоку и т. д. Таким образом, центробежная сила, вернее, учет ее вместо центростремительной, может привести к аварии, или ДТП, так как автомобиль поедет совсем не туда, куда рассчитывали.
И вот студенты попросили автора научить их, как убедить инспектора ГАИ в отсутствии центробежной силы. Запоминайте, и вам может пригодиться!
Если на автомобиль и действует какая-нибудь сила P, то только со стороны дороги на колеса (воздух здесь ни при чем, его не учитываем). Если эта сила центробежная, то она будет прогибать шины от центра наружу, а если центростремительная – то, наоборот, к центру. А любой инспектор ГАИ отлично знает, что на повороте шины автомобилей прогибаются по направлению к центру (рис. 56). Значит, и сила P действует туда же, и она центростремительная. Скольких аварий удалось бы избежать, если бы в ГАИ «не злоупотребляли» принципом Даламбера!
Рис. 56. Шины при повороте прогибаются к центру поворота
Но ради справедливости заметим все-таки, что центробежные или просто направленные от центра силы все-таки бывают, но действуют они вовсе не на то тело, которое вращается, а на связь, удерживающую это тело (рис. 57). То есть не на автомобиль, а на дорогу, не на Луну, а на Землю, не на камень в праще, а на веревку и руку человека и т. д.
Рис. 57. Действие центробежных сил
Может возникнуть вопрос, а почему же все-таки падает велосипед наружу при крутом повороте, если не успел наклониться внутрь, почему опрокидываются наружу при поворотах на большой скорости трамваи, поезда и автомобили? Ведь центробежной силы нет, что же толкает эти машины наружу при повороте?
Поясним это на примере велосипеда, а заодно станет ясно, почему он так устойчив. Представьте себе едущий велосипед, который начинает поворачивать (рис. 58). Взглянем на него сверху. Колеса начинают «уходить» к центру поворота, влекомые силой трения с дорогой, а весь верх, включая седока, или байкера по-современному, стремится продолжать свой путь прямолинейно – по закону инерции. Что же получается? Колеса «выезжают» из-под седока вбок, и он падает набок – наружу от поворота. Но ни в коем случае не так, как объясняют это в ГАИ, – не наружу от касательной к повороту, от своего предыдущего прямолинейного пути. А точнее – где-то между окружностью поворота и этой касательной. Этим же действием инерции объясняется устойчивость движения велосипеда. Стоит начать ему падать набок, как сознательно или автоматически велосипедист поворачивает руль в сторону падения и как бы «подводит» колеса под положение наклон себя.
Рис. 58. Едущий велосипед на повороте: а – вид сверху; б – вид спереди
Таким же образом, а именно проявлением инерции, объясняется отбрасывание людей наружу на так называемом «колесе смеха», или «чертовом колесе». Можно говорить о центробежном эффекте или центробежном стремлении, благодаря которому люди, автомобили, велосипеды и т. д., движущиеся по кругу, стремятся оказаться на самом большом его радиусе, или, как это нам кажется, отбрасываются наружу (рис. 59). Естественно – они стремятся двигаться по прямой (по закону инерции), а прямая – это та же окружность, но с бесконечно большим радиусом, заведомо превышающим радиус любой окружности.
Рис. 59. Люди на вращающемся колесе отбрасываются на его края
На этом же свойстве основаны многочисленные другие аттракционы – «чертовы», или «мертвые», петли (изобретенные в 1902 г. одновременно двумя цирковыми актерами – Джонсоном и Нуазеттом) (рис. 60), наклонные карусели, которые широко используются и сегодня в парках развлечений, и т. д.
Рис. 60. «Чертова петля» и велосипед на ней
Этот же центробежный эффект используется для создания так называемой «искусственной гравитации», причем современный взгляд на природу тяготения, как это ни удивительно, не усматривает здесь особой разницы. (Кого заинтересует этот достаточно сложный вопрос, автор отсылает к своей книге [11]). Космические станции предполагается вращать вокруг оси так, чтобы космонавты чувствовали себя комфортно, ощущая тяжесть почти как на Земле. Нечто аналогичное происходит и с растениями, которые высаживают на внутренней части вращающегося колеса (рис. 61). Проросшие семена бобов дают ростки, устремляющиеся не вверх, как обычно, а к центру колеса, т. е. в направлении искусственной Так было показано, что и для живых организмов гравитация естественная или искусственная – все равно.
Рис. 61. Стебли проросших растений гравитации. направлены к оси, корешки – наружу
Если быть точнее, то конечно, разница есть. При естественной гравитации тела притягиваются к некой точке, а при искусственной как бы «отталкиваются» от нее, что и видно из рис. 61. Но принципиального отличия в биологическом отношении здесь нет.
Тайна вращающегося волчка
Но совсем запутано дело, когда силы инерции при вращении не Даламберовы, а Эйлеровы. Те, которые «возникают» при использовании вращающейся системы отсчета. То есть когда мы пытаемся вращающуюся систему принять за неподвижную и приложить такие силы инерции, которые сохранили бы все по-прежнему.
Вспомните человека, идущего в поворачивающем трамвае, и вы поймете, насколько сложны при этом должны быть силы, чтобы в неподвижном трамвае сбить с пути человека так же, как это произойдет с ним в поворачивающем. Всякие кориолисовы силы и гироскопические моменты, используемые при этом, – те же фиктивные силы инерции, только гораздо более сложные.
Попытаемся для примера пояснить, почему реки, текущие вдоль меридиана, в Северном полушарии подмывают правые берега, а в Южном – левые. Это можно объяснить просто и доходчиво без сил инерции, и сложно с ними, тем более несуществующими. Такое свойство рек подмывать разные берега в разных полушариях называется законом Бэра, по имени русского географа К. М. Бэра, жившего в XIX веке и подметившего эту особенность.
Земля, как известно, вращается с запада на восток. Поэтому нам и кажется, что Солнце идет над нами с востока на запад. Так как Земля вращается, она не может служить достаточно точной инерциальной (неподвижной) системой отсчета, хотя часто мы и считаем ее таковой. Поэтому нас и удивляют всякие необычные явления, которые в неподвижной системе отсчета происходить не могут.
Взглянем на Землю с высоты со стороны ее Северного полюса. Представим для простоты, что река, начинаясь на экваторе, течет прямо на север, пересекает Северный полюс и заканчивается тоже на экваторе, но уже с другой стороны. Вода в реке на экваторе имеет ту же скорость в направлении с запада на восток (это не течение реки, это ее скорость вместе с берегами и с Землей!), как и ее берега, что при суточном вращении Земли составляет около 0,5 км/с. По мере приближения к полюсу скорость берегов уменьшается, а на самом полюсе она равна нулю. Но вода в реке «не хочет» уменьшать свою скорость – она подчиняется закону инерции. А скорость эта направлена в сторону вращения Земли, то есть с запада на восток. Вот и начинает вода «давить» на восточный берег реки, который оказывается правым по течению. Дойдя до полюса, вода в реке полностью утратит свою скорость в «боковом», «касательном», направлении, так как полюс – это неподвижная точка на Земле. Но река-то продолжает течь теперь уже на юг, и берега ее вращаются опять же с запада на восток со все увеличивающейся, по мере приближения к экватору, скоростью. Западный берег начинает «давить» на воду в реке, разгоняя ее с запада на восток, ну а вода, по третьему закону Ньютона, «давит» на этот берег, который опять же оказывается правым по течению.
На Южном полушарии все происходит наоборот, потому что если взглянуть на Землю со стороны Южного полюса, то вращение ее уже будет видно в другом направлении – не против часовой стрелки, как со стороны Северного полюса, а по часовой стрелке. Все, кто имеет глобус, могут проверить это.
Вот вам и закон Бэра!
Но если попытаться пояснить то же самое с точки зрения механики относительного движения и Эйлеровых сил инерции – результат был бы плачевный. Половина читателей заснула бы, а другая половина занялась бы другими делами. Здесь без высшей математики и механики не обойтись, да и физический смысл начисто теряется. Потому-то студенты так плохо воспринимают и «сдают» этот материал. Но для сложных случаев, например теории гироскопов, без этого обойтись нельзя.
Точно так же, только пользуясь понятием инерции, можно объяснить такое сложное явление, как гироскопический эффект, поясняющий, например, таинственное поведение вращающегося волчка.
Продолжим нашу реку дальше и опишем ею замкнутый круг вокруг Земли. При этом мы заметим, что вся северная часть реки (в Северном полушарии) будет стремиться направо, а вся южная часть – налево. Вот и все объяснение гироскопического эффекта, который считается едва ли не труднейшим в теоретической механике!
Итак, наша река – это огромное кольцо или маховик, вращающийся в том же направлении, что и течение реки. Если при этом поворачивать этот маховик в направлении вращения Земли – против часовой стрелки, то вся северная его часть будет отклоняться вправо, а южная – влево. Иначе говоря, маховик будет поворачиваться так, чтобы его вращение совпало с направлением вращения Земли! А физический смысл этого явления уже понятен из рассмотрения закона Бэра.
Проверить это утверждение экспериментом проще простого, особенно тем, у кого есть велосипед. Приподнимите переднее колесо велосипеда над полом и разгоните его в направлении вращения нашей реки-маховика, то есть так же, как оно вращается при движении велосипеда вперед. А затем резко поверните руль велосипеда в направлении вращения Земли – то есть против часовой стрелки. И вы увидите, что весь велосипед наклонится верхней частью вправо, что и требовалось доказать (рис. 62).
Рис. 62. Проверка гироскопического момента на велосипедном колесе
Если под рукой нет велосипеда, а чаще всего на работе и учебе так и бывает, то можно обойтись монеткой или любым колесиком, которое можно покатать по столу. При этом вы увидите, что куда монетка будет наклоняться вбок, теряя равновесие, туда и будет сворачивать по ходу своего качения (рис. 63). Это замечательное и, главное, воспроизводимое в любой момент правило поможет вам определить поведение вращающегося колеса, маховика, диска при их вынужденных поворотах. Автор сам в своей работе только этим правилом и пользуется, и поверьте, что это намного проще, чем другими, да и проверить в любой момент можно.
Рис. 63. Правило колеса – оно сворачивает в ту же сторону, на какой бок стремится упасть
Ну а теперь в самый раз разобраться, как наступает прецессия – конусообразное движение волчка, да и самой Земли, если хотите. Итак, наша река-маховик постоянно пытается отклонить Северный полюс Земли вправо; но Земля-то крутится, вот и, постоянно отклоняясь вправо, Северный полюс начинает «выписывать» окружность. Так же поведет себя вращающийся волчок, если толкнуть его или другим способом нарушить его равновесие. Только следует знать, что прецессирует Земля не из-за рек (мы поговорим об этом тоже!), а из-за неравномерного (вне-центренного) притяжения ее, главным образом Солнцем. Ось вращения Земли «ходит кругом по конусу», образующая которого наклонена к оси конуса на угол 0,41 рад, или 23° 27 . Полный оборот вокруг оси конуса ось Земли делает за 26 тысяч лет, и, естественно, координаты звезд, в том числе и условно неподвижных (например, Полярной звезды), непрерывно меняются. Древние египтяне, например, видели на небе такие созвездия, которые их современники уже не могут видеть.
Как же определить направление прецессии любого вращающегося тела – колеса, волчка и т. д.? Да по тому же «правилу колеса», о котором уже говорилось. Итак, если любое вращающееся тело представить в виде катящегося колеса, а возмущающий момент – в виде момента, стремящегося опрокинуть это колесо набок (что, собственно, и делают силы тяжести!), то колесо это будет сворачивать в сторону падения по ходу качения. То есть если колесо падает направо, то вправо же оно и свернет. Вот это-то поворачивание колеса и есть прецессия, и так можно определить ее направление.