Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым.

Движение тела по окружности с постоянной по модулю скоростью — это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.

Положение тела на окружности определяется радиус-вектором Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru , проведенным из центра окружности. Модуль радиус-вектора равен радиусу окружности R (рис. 1).

Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru

Рис. 1

За время Δt тело, двигаясь из точки А в точку В, совершает перемещение Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru , равное хорде АВ, и проходит путь, равный длине дуги l.

Радиус-вектор поворачивается на угол Δφ. Угол выражают в радианах.

Скорость Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью. Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени Δt, за который эта дуга пройдена:

Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru

Скалярная физическая величина, численно равная отношению угла поворота радиус-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью:

Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru

В СИ единицей угловой скорости является радиан в секунду (рад/с).

При равномерном движении по окружности угловая скорость и модуль линейной скорости — величины постоянные: ω = const; υ = const.

Положение тела можно определить, если известен модуль радиус-вектора Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru и угол φ, который он составляет с осью Ox (угловая координата). Если в начальный момент времени t0 = 0 угловая координата равна φ0, а в момент времени t она равна φ, то угол поворота Δφ радиуса-вектора за время Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru равен Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru . Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности:

Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru

Оно позволяет определить положение тела в любой момент времени t. Учитывая, что Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru , получаем: Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru

Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru — формула связи между линейной и угловой скоростью.

Промежуток времени Τ, в течение которого тело совершает один полный оборот, называется периодом вращения:

Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru

где N — число оборотов, совершенных телом за время Δt.

За время Δt = Τ тело проходит путь Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru . Следовательно,

Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru

Величина ν, обратная периоду, показывающая, сколько оборотов совершает тело за единицу времени, называется частотой вращения:

Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru

Следовательно,

Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru

Вращательное движение — вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной.

Угловое ускорение — псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости твёрдого тела.

Вектор углового ускорения Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru направлен вдоль оси вращения (в сторону Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru при ускоренном вращении и противоположно Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru — при замедленном).

При вращении вокруг неподвижной точки вектор углового ускорения определяется как первая производная от вектора угловой скорости Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru по времени, то есть

Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru ,

Существует связь между тангенциальным и угловым ускорениями:

Кинематика движения точки по окружности и вращательного движения твердого тела. Угловая скорость. Угловое ускорение. Связь линейной скорости с угловой и тангенциального ускорения с угловым. - student2.ru ,

где R — радиускривизнытраекторииточки в данный момент времени. Итак, угловое ускорение равно второй производной от угла поворота по времени или первой производной от угловой скорости по времени. Угловое ускорение измеряется в рад/с2 .

Наши рекомендации