Интерференция световых волн. Когерентность. Временная и пространственная когерентность.

Интерференция световых волн. Когерентность. Временная и пространственная когерентность.

Пусть две волны одинаковой частоты, накладываясь друг на друга, возбуждают в некоторой точке пространства колебания одинакового направления: Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru , Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru .

Амплитуда результирующего колебания в данной точке определяется формулой: Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru .

Если разность фаз α2 – α1 возбуждаемых волнами колебаний остается постоянной во времени, то волны называются когерентными. Источники таких волн также называются когерентными. При наложении когерентных световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других – минимумы интенсивности. Это явление называется интерференцией волн.

Оптическая длина пути – произведение расстояния, которое проходит свет и показателя преломления среды, в которой этот свет идет L=n·l

Оптическая разность хода – величина, равная разности оптических длин проходимых волнами путей.

Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru , где

n – показатель преломления; s – путь.

При наложении когер. волн возможны два предельных случая:

· Условие максимума:

Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru , где (k = 0, ±1, ±2, ±3…)

· Условие минимума:

Разность хода волн равна нечетному числу длин полуволн.

Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru , где (k = 0, ±1, ±2, ±3…) Волны приходят в рассматриваемую точку в противофазе и гасят друг друга. Амплитуда колебаний данной точки равна нулю.

Интерференция света при отражении от тонких пленок. Полосы равной толщины и равного наклона. Кольца ньютона.

Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru При освещении тонкой плёнки можно наблюдать интерференцию световых волн, отражённых от верхней и нижней поверхности плёнок. Для белого света, представляющего собой смешение электромагнитных волн из всего оптического спектра интерференционные полосы приобретают окраску. Это явление получило название цветов тонких плёнок. Цвета тонких плёнок наблюдаются на стенках мыльных пузырьков, на плёнках масла, нефти, на поверхности металлов при их закалке (цвета побежалости).

Тепловое излучение.

Закон Кирхгофа.

Самым распространенным является свечение тел, обусловленное их нагреванием. Этот вид свечения называется тепловым (или температурным) излучением. Тепловое излучение имеет место при любой температуре, однако при невысоких температурах излучаются практически лишь длинные (инфракрасные) электромагнитные волны. Из всех видов излучения равновесным может быть только тепловое излучение. К равновесным состояниям и процессам применимы законы термодинамики. Следовательно, и тепловое излучение должно подчиняться некоторым общим закономерностям, вытекающим из принципов термодинамики.

Закон Кирхгофа:

Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru Отношение испускательной и поглощательной способностей не зависит от природы тела, оно является для всех тел одной и той же (универсальной) функцией частоты (длины волны) и температуры:

rωT – испускательная способность тела.

Сами величины rωT и aωT,взятые отдельно, могут меняться чрезвычайно сильно при переходе от одного тела к другому. Отношение же их оказывается одинаковыми для всех тел. Это означает, что тело, сильнее поглощающее какие-либо лучи будет эти лучи сильнее и испускать.

Для абсолютно черного тела по определению aωT = 1. Следовательно, из формулы вытекает, что rωT для такого тела равна f(ω, T).Таким образом, универсальная функция Кирхгофа f(ω, T) есть не что иное, как испускательная способность абсолютно твердого тела.

19 20

22.23.Абсолютно черное тело. Законы излучения абсолютно черного тела (Формула Планка, закон Стефана-Больцмана, закон смещения Вина).

По определению поглащательная способность тела aωT не может быть больше единицы. Для тела, полностью поглощающего упавшее на него излучение всех частот, aωT = 1. Такое тело называют абсолютно черным. Тело, для которого aωT = aT = const < 1, называется серым.

Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru Формула Планка – выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком. Для плотности энергии излучения u (ω, T):

Где ħ – постоянная Планка – 1.054 · 10−27 эрг·с

k – постоянная Больцмана

Закон Стефана-Больцмана – закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона: мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела: P = SεσT4, где ε – степень черноты (для всех веществ ε < 1, для абсолютно черного тела ε = 1). Важно отметить, что закон говорит только об общей излучаемой энергии. Распределение энергии по спектру излучения описывается формулой Планка, в соответствии с которой в спектре имеется единственный максимум, положение которого определяется законом Вина.

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина: λmax = 0,0028999/T, где T – температура в кельвинах, а λmax – длина волны с максимальной интенсивностью в метрах.

22-23

25-26

Опыты Резерфорда. Планетарная модель атома.

Резерфорд предложил применить зондирование атома с помощью α-частиц, которые возникают при радиоактивном распаде радия и некоторых других элементов. Масса α-частиц приблизительно в 7300 раз больше массы электрона, а положительный заряд равен удвоенному элементарному заряду. α-частицы – это полностью ионизированные атомы гелия. Этими частицами Резерфорд бомбардировал атомы тяжелых элементов (золото, серебро, медь и др.). Электроны, входящие в состав атомов, вследствие малой массы не могут заметно изменить траекторию α-частицы. Рассеяние, то есть изменение направления движения α-частиц, может вызвать только тяжелая положительно заряженная часть атома.

От радиоактивного источника, заключенного в свинцовый контейнер, α-частицы направлялись на тонкую металлическую фольгу. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Сцинтилляции (вспышки) на экране наблюдались глазом с помощью микроскопа.

Наблюдения рассеянных α-частиц в опыте Резерфорда можно было проводить под различными углами φ к первоначальному направлению пучка. Было обнаружено, что большинство α-частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30°. Очень редкие α-частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к 180°.

А

При таком распределении положительный заряд не может создать сильное электрическое поле, способное отбросить α-частицы назад. Электрическое поле однородного заряженного шара максимально на его поверхности и убывает до нуля по мере приближения к центру шара. Если бы радиус шара, в котором сосредоточен весь положительный заряд атома, уменьшился в n раз, то максимальная сила отталкивания, действующая на α-частицу, по закону Кулона возросла бы в n2 раз.

Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru Таким образом, опыты Резерфорда и его сотрудников привели к выводу, что в центре атома находится плотное положительно заряженное ядро. Опираясь на классические представления о движении микрочастиц,

Резерфорд предложил планетарную модель атома. Согласно этой модели, в центре атома располагается положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Атом в целом нейтрален. Вокруг ядра, подобно планетам, под действием кулоновских сил со стороны ядра вращаются электроны. Находиться в состоянии покоя электроны не могут, так как они упали бы на ядро.

Б

Интерференция световых волн. Когерентность. Временная и пространственная когерентность.

Пусть две волны одинаковой частоты, накладываясь друг на друга, возбуждают в некоторой точке пространства колебания одинакового направления: Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru , Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru .

Амплитуда результирующего колебания в данной точке определяется формулой: Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru .

Если разность фаз α2 – α1 возбуждаемых волнами колебаний остается постоянной во времени, то волны называются когерентными. Источники таких волн также называются когерентными. При наложении когерентных световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других – минимумы интенсивности. Это явление называется интерференцией волн.

Оптическая длина пути – произведение расстояния, которое проходит свет и показателя преломления среды, в которой этот свет идет L=n·l

Оптическая разность хода – величина, равная разности оптических длин проходимых волнами путей.

Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru , где

n – показатель преломления; s – путь.

При наложении когер. волн возможны два предельных случая:

· Условие максимума:

Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru , где (k = 0, ±1, ±2, ±3…)

· Условие минимума:

Разность хода волн равна нечетному числу длин полуволн.

Интерференция световых волн. Когерентность. Временная и пространственная когерентность. - student2.ru , где (k = 0, ±1, ±2, ±3…) Волны приходят в рассматриваемую точку в противофазе и гасят друг друга. Амплитуда колебаний данной точки равна нулю.


Наши рекомендации