Термодинамическая шкала температур

Для измерения температуры применяются приборы, основанные на определении тех или иных физических свойств вещества, изменяющихся с изменением температуры. Эти приборы градуируются в соответствии с принятой температурной шкалой. Однако при установлении той или иной температурной шкалы возникают принципиальные трудности, связанные с тем, что свойства каждого вещества по-разному изменяются в одном и том же интервале температур. Например, конструкция многих термометров основана на явлении расширения жидкости при увеличении температуры; таковы хорошо известные термометры с ртутным или спиртовым столбиком, длина которого увеличивается с ростом температуры. Но значения температурного коэффициента расширения даже для одной и той же жидкости различны при различных температурах, что создает сложности при установлении температурной шкалы.

В 1742 г. шведский физик А. Цельсий предложил приписать точке плавления льда температуру 0°, а точке кипения воды 100°, а интервал между ними разделить на сто равных частей*. Однако если разделить на сто равных частей столбик ртути между точками плавления льда и кипения воды, то, учитывая зависимость коэффициента расширения ртути от температуры, выясним, что одно и то же приращение длины столбика ртути будет соответствовать различным приращениям температур. Цена деления равномерной шкалы, построенной по различным термометрическим жидкостям, будет различной. Если, например, заполнить термометр водой, то при нагреве такого термометра от точки плавления льда можно увидеть удивительную картину: вместо того чтобы с повышением температуры перемещаться вверх, столбик воды начнет опускаться вниз ниже уровня, соответствующего точке плавления льда. Оказывается, плотность воды при атмосферном давлении имеет максимальное значение при температуре 3,98 °С. Следовательно, при нагреве от 0 до 3,98 °С объем воды будет уменьшаться (а значит, будет опускаться столбик водяного термометра).
В Прошлом температурные шкалы устанавливались по различным термометрическим веществам, но затем было определено, что одним из наиболее удобных термометрических веществ является идеальный газ.

Абсолютная температура — это безусловная мера температуры и одна из главных характеристик термодинамики.
Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры — кельвин (К).
Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры: абсолютный ноль — наиболее низкая возможная температура, при которой ничего не может быть холоднее и теоретически невозможно извлечь из вещества тепловую энергию.
Абсолютный ноль определен как 0 K. Что приблизительно равно −273.15 °C. Один Кельвин равен одному градусу Цельсия.

22. Уравнение состояния идеального газа

В 1834 г. французский физик Б. Клапейрон, работавший длительное время в Петербурге, вывел уравнение состояния идеаль­ного газа для постоянной массы газа. В 1874 г. Д. И. Менделеев вывел уравнение для произвольного числа молекул.

Уравнение состояния идеального газа — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

Термодинамическая шкала температур - student2.ru

где

· Термодинамическая шкала температур - student2.ru — давление,

· Термодинамическая шкала температур - student2.ru — молярный объём,

· Термодинамическая шкала температур - student2.ru — универсальная газовая постоянная

· Термодинамическая шкала температур - student2.ru — абсолютная температура,К.

Так как Термодинамическая шкала температур - student2.ru , где Термодинамическая шкала температур - student2.ru — количество вещества, а Термодинамическая шкала температур - student2.ru , где Термодинамическая шкала температур - student2.ru — масса, Термодинамическая шкала температур - student2.ru — молярная масса, уравнение состояния можно записать:

Термодинамическая шкала температур - student2.ru

Эта форма записи носит имя уравнения (закона) Менделеева — Клапейрона.

Физический смысл универсальной газовой постоянной. R – работа расширения 1 кмоля идеального газа при нагревании на один градус, если давление не меняется23. газовые законы, уравнения, график в осях (p, V), (p,T), (V, T)

Наши рекомендации