Векторное поле и его характеристики.
Если каждой пространства М ставится в соотвтствие вектор , то задается векторное поле (М).
Пусть в пространстве М задана поверхность D. Будем считать, что в каждой точке Р определяется положительное направление нормали единичным вектором .
В пространстве М зададим векторное поле, постовив в соответствие каждой точке точке пространства вектор, определенный координатами:
Если разбить каким – либо образом поверхность на частичные участки Di и составить сумму , где - скалярное произведение, то предел этой суммы при стремлении к нулю площадей частичных участков разбиения (если этот предел существует) будет поверхностным интегралом.
Векторные линии.
Дивергенция.
Определение. Выражение называется дивергенцией вектора (дивергенцией векторной функции) и обозначается
Таким образом, формулу Гаусса – Остроградского может быть записана в виде:
или
т.е. интеграл от дивергенции векторного поля по объему равен потоку вектора через поверхность, ограниченную этим объемом.
Ротор.
Определение. Вектор , компоненты которого равны соответственно равны
называется вихремили ротором вектора и обозначается
Поток векторного поля через поверхность.
Определение. Поверхностный интеграл называется потоком векторного поля через поверхность D.
Если поверхность разбита на конечное число частичных поверхностей, то поток векторного поля через всю поверхность будет равен сумме потоков через частичные поверхности.
Если преобразовать скалярное произведение в координатную форму, то получаем соотношение:
Если на области D существует функция f(x, y, z), имеющая непрерывные частные производные, для которых выполняются свойства:
Формула Стокса.
Формула Стокса связывает криволинейные интегралы второго рода с поверхностными интегралами второго рода.
Пусть в пространстве задана некоторая поверхность S. L – непрерывный кусочно – гладкий контур поверхности S.
z S
L
y
D
l
x
Предположим, что функции P,Q и R непрерывны на поверхности S вместе со своими частными производными первого порядка. Применим формулу, выражающую криволинейный интеграл через определенный.
Введем обозначения:
Применив формулу Грина, можно заменить криволинейный интеграл равным ему двойным интегралом. После преобразований устанавливается следуюшее соответствие между криволинейным и поверхностным интегралом:
Циркуляция.
Определение. Криволинейный интеграл, представляющий собой работу векторного поля вдоль некоторой кривой L называется линейным интеграломот вектора по ориентированной кривой L.
Если кривая L представляет собой замкнутый контур, то линейный интеграл по такому контуру называется циркуляцией вектроного поля вдоль контура L.
В векторной форме теорему Стокса можно сформулировать так:
Циркуляция вектора вдоль контура некоторой поверхности равна потоку вихря (ротора) через эту поверхность.
Отметим, что рассмотренная выше формула Грина – Остроградского является частным случаем формулы Стокса.
Также при условии равенства нулю всех компонент ротора вектора, получаем, что криволинейный интеграл по любой пространственной кривой равен нулю, т.е. криволинейный интеграл не зависит от пути интегрирования.
Потенциальное поле.
Если на области D существует функция f(x, y, z), имеющая непрерывные частные производные, для которых выполняются свойства:
то такую функцию называют потенциальной функцией или потенциаломвектора .
Тогда вектор является градиентом функции f.
Потенциал может быть найден по формуле:
В этой формуле x0, y0, z0 – координаты некоторой начальной точки. В качестве такой точки удобно брать начало координат.
Теорема.:
1) Интеграл от вектора по любому кусочно – гладкому контуру, принадлежащему области, равен нулю.
2) Интеграл по любому кусочно – гладкому пути, соединяющему две любые точки поля не зависит, от пути интегрирования.
Векторное поле называется соленоидальным (трубчатым), если div =0 .
C помощью описанного выше оператора Гамильтона
операторо Лапласа.
Справедливы следующие соотношения: