Интегрирование простейших дробей.
Задача нахождения неопределенного интеграла дробно рациональной функции сводится к интегрированию простейших дробей. Поэтому рекомендуем для начала ознакомиться с разделом теории разложение дроби на простейшие.
Пример.
Найти неопределенный интеграл .
Решение.
Так как степень числителя подынтегральной функции равна степени знаменателя, то для начала выделяем целую часть, проводя деление столбиком многочлена на многочлен:
Поэтому, .
Разложение полученной правильной рациональной дроби на простейшие дроби имеет вид . Следовательно,
Полученный интеграл представляет собой интеграл простейшей дроби третьего типа. Забегая немного вперед, отметим, что взять его можно методом подведения под знак дифференциала.
Так как , то . Поэтому
Следовательно,
Теперь перейдем к описанию методов интегрирования простейших дробей каждого из четырех типов.
Интегрирование простейших дробей первого типа
Для решения этой задачи идеально подходит метод непосредственного интегрирования:
Пример.
Найти множество первообразных функции
Решение.
Найдем неопределенный интеграл , используя свойства первообразной, таблицу первообразных и правило интегрирования .
К началу страницы
Интегрирование простейших дробей второго типа
Для решения этой задачи также подходит метод непосредственного интегрирования:
Пример.
Найдите неопределенный интеграл .
Решение.
К началу страницы
Интегрирование простейших дробей третьего типа
Для начала представляем неопределенный интеграл в виде суммы:
Первый интеграл берем методом подведения под знак дифференциала:
Поэтому,
У полученного интеграла преобразуем знаменатель:
Следовательно,
Формула интегрирования простейших дробей третьего типа принимает вид:
Пример.
Найдите неопределенный интеграл .
Решение.
Используем полученную формулу:
Если бы у нас не было этой формулы, то как бы мы поступили:
К началу страницы
Интегрирование простейших дробей четвертого типа
Первый шаг – подводим под знак дифференциала:
Второй шаг – нахождение интеграла вида . Интегралы подобного вида находятся с использованием рекуррентных формул. (Смотрите раздел интегрирование с использованием рекуррентных формул). Для нашего случая подходит следующая рекуррентная формула:
Пример.
Найдите неопределенный интеграл
Решение.
Для данного вида подынтегральной функции используем метод подстановки. Введем новую переменную (смотрите раздел интегрирование иррациональных функций):
После подстановки имеем:
Пришли к нахождению интеграла дроби четвертого типа. В нашем случае имеем коэффициенты М = 0, р = 0, q = 1, N = 1 и n = 3. Применяем рекуррентную формулу:
После обратной замены получаем результат:
Интегрирование тригонометрических функций | ||||||||||||||||||||
1.Интегралы вида вычисляются преобразованием произведения тригонометрических функций в сумму по формулам: Например, 2.Интегралы вида , где m или n– нечетное положительное число, вычисляются подведением под знак дифференциала. Например, 3.Интегралы вида , где m и n–четные положительные числа, вычисляются с помощью формул понижения степени: Например, 4.Интегралы где вычисляются заменой переменной: или Например, 5.Интегралы вида сводятся к интегралам от рациональных дробей с помощью универсальной тригонометрической подстановки тогда (т.к. =[после деления числителя и знаменателя на ]= ; Например, Следует заметить, что использование универсальной подстановки нередко приводит к громоздким выкладкам. | ||||||||||||||||||||
§5. Интегрирование простейших иррациональностей | ||||||||||||||||||||
Рассмотрим методы интегрирования простейших видов иррациональностей. 1. Функции такого вида интегрируются так же, как простейшие рациональные дроби 3–го типа: в знаменателе из квадратного трехчлена выделяется полный квадрат и вводится новая переменная. Пример. 2. (под знаком интеграла–рациональная функция аргументов ). Интегралы такого вида вычисляются с помощью замены . В частности, в интегралах вида обозначают . Если подынтегральная функция содержит корни разных степеней: , то обозначают , где n– наименьшее общее кратное чиселm,k. Пример 1. Пример 2. –неправильная рациональная дробь, выделим целую часть:
Получим
3.Интегралы вида вычисляются с помощью тригонометрических подстановок:
Пример 1.
Пример 2.
|
44
45 Определённый интеграл
Определённый интеграл — аддитивный монотонный нормированный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция илифункционал, а вторая — область в множестве задания этой функции (функционала).
Определение
Пусть определена на . Разобьём на части с несколькими произвольными точками . Тогда говорят, что произведено разбиение отрезка Далее выберем произвольную точку , ,
Определённым интегралом от функции на отрезке называется предел интегральных сумм при стремлении ранга разбиения к нулю , если он существует независимо от разбиения и выбора точек , то есть
Если существует указанный предел, то функция называется интегрируемой на по Риману.
Обозначения
· — нижний предел.
· — верхний предел.
· — подынтегральная функция.
· — длина частичного отрезка.
· — интегральная сумма от функции на соответствующей разбиению .
· — максимальная длина част.отрезка.
Свойства
Если функция интегрируема по Риману на , то она ограничена на нем.
Геометрический смысл
Определённый интеграл как площадь фигуры
Определённый интеграл численно равен площади фигуры, ограниченной осью абсцисс, прямыми и и графиком функции .
Теорема Ньютона — Лейбница
[править]
Материал из Википедии — свободной энциклопедии
(перенаправлено с «Формула Ньютона-Лейбница»)
Формула Ньютона — Лейбница или основная теорема анализа даёт соотношение между двумя операциями: взятием определенного интеграла и вычислением первообразной.
Если непрерывна на отрезке и — ее любая первообразная на этом отрезке, то имеет место равенство |
Доказательство
Пусть на отрезке задана интегрируемая функция . Начнем с того, что отметим, что
то есть не имеет никакого значения, какая буква ( или ) стоит под знаком в определенном интеграле по отрезку .
Зададим произвольное значение и определим новую функцию . Она определена для всех значений , потому что мы знаем, что если существует интеграл от на , то существует также интеграл от на , где . Напомним, что мы считаем по определению
(1)
Заметим, что
Покажем, что непрерывна на отрезке . В самом деле, пусть ; тогда
и если , то
Таким образом, непрерывна на независимо от того, имеет или не имеет разрывы; важно, что интегрируема на .
На рисунке изображен график . Площадь переменной фигуры равна . Ее приращение равно площади фигуры , которая в силу ограниченности , очевидно, стремится к нулю при независимо от того, будет ли точкой непрерывности или разрыва , например точкой .
Пусть теперь функция не только интегрируема на , но непрерывна в точке . Докажем, что тогда имеет в этой точке производную, равную
(2)
В самом деле, для указанной точки
(1) , (3)
Мы положили , а так как постоянная относительно ,TO . Далее, в силу непрерывности в точке для всякого можно указать такое , что для .
Поэтому
что доказывает, что левая часть этого неравенства есть о(1) при .
Переход к пределу в (3) при показывает существование производной от в точке и справедливость равенства (2). При речь здесь идет соответственно о правой и левой производной.
Если функция непрерывна на , то на основании доказанного выше соответствующая ей функция
(4)
имеет производную, равную . Следовательно, функция есть первообразная для на .
Это заключение иногда называется теоремой об интеграле с переменным верхним пределом или теоремой Барроу.
Мы доказали, что произвольная непрерывная на отрезке функция имеет на этом отрезке первообразную, определенную равенством (4). Этим доказано существование первообразной для всякой непрерывной на отрезке функции.
Пусть теперь есть произвольная первообразная функции на . Мы знаем, что , где — некоторая постоянная. Полагая в этом равенстве и учитывая, что , получим .
Таким образом, . Но
Поэтому
Несобственный интеграл
[править]
Материал из Википедии — свободной энциклопедии
Определённый интеграл называется несобственным, если выполняется, по крайней мере, одно из следующих условий:
· Предел a или b (или оба предела) являются бесконечными;
· Функция f(x) имеет одну или несколько точек разрыва внутри отрезка [a, b].
Содержание [убрать] · 1 Несобственные интегралы I рода o 1.1 Геометрический смысл несобственного интеграла I рода o 1.2 Примеры · 2 Несобственные интегралы II рода o 2.1 Геометрический смысл несобственных интегралов II рода o 2.2 Пример · 3 Отдельный случай · 4 Критерий Коши · 5 Абсолютная сходимость · 6 Условная сходимость · 7 См. также · 8 Список используемой литературы |
[править]Несобственные интегралы I рода
Пусть определена и непрерывна на множестве от и . Тогда:
1. Если , то используется обозначение и интеграл называется несобственным интегралом Римана первого рода. В этом случае называется сходящимся.
2. Если не существует конечного ( или ), то интеграл называется расходящимся к , или просто расходящимся.
Пусть определена и непрерывна на множестве от и . Тогда:
1. Если , то используется обозначение и интеграл называется несобственным интегралом Римана первого рода. В этом случае называется сходящимся.
2. Если не существует конечного ( или ), то интеграл называется расходящимся к , или просто расходящимся.
Если функция определена и непрерывна на всей числовой прямой, то может существовать несобственный интеграл данной функции с двумя бесконечными пределами интегрирования, определяющийся формулой:
, где с — произвольное число.
[править]Геометрический смысл несобственного интеграла I рода
Несобственный интеграл выражает площадь бесконечно длинной криволинейной трапеции.
[править]Примеры
[править]Несобственные интегралы II рода
Пусть определена на , терпит бесконечный разрыв в точке x=a и . Тогда:
1. Если , то используется обозначение и интеграл называется несобственным интегралом Римана второго рода. В этом случае интеграл называется сходящимся.
2. Если или , то обозначение сохраняется, а называется расходящимся к , или просто расходящимся.
Пусть определена на , терпит бесконечный разрыв при x=b и . Тогда:
1. Если , то используется обозначение и интеграл называется несобственным интегралом Римана второго рода. В этом случае интеграл называется сходящимся.
2. Если или , то обозначение сохраняется, а называется расходящимся к , или просто расходящимся.
Если функция терпит разрыв во внутренней точке отрезка , то несобственный интеграл второго рода определяется формулой:
[править]Геометрический смысл несобственных интегралов II рода
Несобственный интеграл выражает площадь бесконечно высокой криволинейной трапеции
[править]Пример
[править]Отдельный случай
Пусть функция определена на всей числовой оси и имеет разрыв в точках .
Тогда можно найти несобственный интеграл
[править]Критерий Коши
1. Пусть определена на множестве от и .
Тогда сходится
2. Пусть определена на и .
Тогда сходится
[править]Абсолютная сходимость
Интеграл называется абсолютно сходящимся, если сходится.
Если интеграл сходится абсолютно, то он сходится.
[править]Условная сходимость
Интеграл называется условно сходящимся, если сходится, а расходится.
48 12. Несобственные интегралы.
При рассмотрении определённых интегралов мы предполагали, что область интегрирования ограничена (более конкретно, является отрезком [a,b] ); для существования определённого интеграла необходима ограниченность подынтегральной функции на [a,b]. Будем называть определённые интегралы, для которых выполняются оба эти условия (ограниченность и области интегрирования, и подынтегральной функции) собственными; интегралы, для которых нарушаются эти требования (т.е. неограничена либо подынтегральная функция, либо область интегрирования, либо и то, и другое вместе) несобственными. В этом разделе мы изучим несобственные интегралы.
- 12.1. Несобственные интегралы по неограниченному промежутку (несобственные интегралы первого рода).
- 12.1.1. Определение несобственного интеграла по бесконечному промежутку. Примеры.
- 12.1.2. Формула Ньютона-Лейбница для несобственного интеграла.
- 12.1.3. Признаки сравнения для неотрицательных функций.
- 12.1.3.1. Признак сравнения.
- 12.1.3.2. Признак сравнения в предельной форме.
- 12.1.4. Абсолютная сходимость несобственных интегралов по бесконечному промежутку.
- 12.1.5. Признаки сходимости Абеля и Дирихле.
- 12.2. Несобственные интегралы от неограниченных функций (несобственные интегралы второго рода).
- 12.2.1. Определение несобственного интеграла от неограниченной функции.
- 12.2.1.1. Особенность на левом конце промежутка интегрирования.
- 12.2.1.2. Применение формулы Ньютона-Лейбница.
- 12.2.1.3. Особенность на правом конце промежутка интегрирования.
- 12.2.1.4. Особенность во внутренней точке промежутка интегрирования.
- 12.2.1.5. Несколько особенностей на промежутке интегрирования.
- 12.2.2. Признаки сравнения для неотрицательных функций.
- 12.2.2.1. Признак сравнения.
- 12.2.2.2. Признак сравнения в предельной форме.
- 12.2.3. Абсолютная и условная сходимость несобственных интегралов от разрывных функций.
- 12.2.4. Признаки сходимости Абеля и Дирихле.
12.1. Несобственные интегралы по неограниченному промежутку
(несобственные интегралы первого рода).
12.1.1. Определение несобственного интеграла по бесконечному промежутку. Пусть функция f(x) определена на полуоси и интегрируема по любому отрезку [a,b], принадлежащему этой полуоси. Предел интеграла при называется несобственным интегралом функции f(x) от a до и обозначается .
Итак, по определению, . Если этот предел существует и конечен, интеграл называется сходящимся; если предел не существует или бесконечен, интеграл называется расходящимся.
Примеры: 1. ; этот предел не существует; следовательно, исследуемый интеграл расходится.
2. ; следовательно, интеграл сходится и равен .
Аналогично интегралу с бесконечным верхним пределом интегрирования определяется интеграл в пределах от до b : и в пределах от до : . В последнем случае f(x) определена на всей числовой оси, интегрируема по любому отрезку; c - произвольная (собственная) точка числовой оси; интеграл называется сходящимся, если существуют и конечны оба входящих в определение предела. Пользуясь свойством аддитивности определённого интеграла, можно показать, что существование конечных пределов и их сумма не зависят от выбора точки c.
Примеры: 3. . Интеграл сходится.
4. следовательно, интеграл сходится и равен .
Очевидно следующее утверждение, которое мы сформулируем для интеграла с бесконечным верхним пределом: сходится тогда и только тогда, когда для любого c, удовлетворяющего неравенству c > a, сходится интеграл (док-во: так как при a < c < b по свойству аддитивности , и от b не зависит, то конечный предел при для интеграла в левой части существует тогда и только тогда, когда существует конечный предел для интеграла в правой части равенства).
12.1.2. Формула Ньютона-Лейбница для несобственного интеграла. В приведённых примерах мы сначала вычисляли с помощью первообразной функции определённый интеграл по конечному промежутку, а затем выполняли предельный переход. Объединим два этих действия в одной формуле. Символом будем обозначать ; символом - соответственно, ; тогда можно записать , , , подразумевая в каждом из этих случаев существование и конечность соответствующих пределов. Теперь решения примеров выглядят более просто: - интеграл сходится; - интеграл расходится.
Для несобственных интегралов применимы формулы интегрирования по частям и замены переменной: ; при замене переменной несобственный интеграл может преобразовываться в собственный. Так, например, вычислим интеграл: . Пусть , ; если , то ; если то ; Поэтому (это уже собственный интеграл) = .
12.1.3. Признаки сравнения для неотрицательных функций. В этом разделе мы будем предполагать, что все подынтегральные функции неотрицательны на всей области определения. До сих пор мы определяли сходимость интеграла, вычисляя его: если существует конечный предел первообразной при соответствующем стремлении ( или ), то интеграл сходится, в противном случае - расходится. При решении практических задач, однако, важно в первую очередь установить сам факт сходимости, и только затем вычислять интеграл (к тому же первообразная часто не выражается через элементарные функции). Сформулируем и докажем ряд теорем, которые позволяют устанавливать сходимость и расходимость несобственных интегралов от неотрицательных функций, не вычисляя их.
12.1.3.1. Признак сравнения. Пусть функции f(x) и g(x) интегр