Современная история сотворения мира
На рисунке 4.3 представлена история сотворения мира, которую мы до сих пор обсуждали. Эта история подтверждается многочисленными наблюдательными данными, и нет особых оснований сомневаться в том, что в целом она верна. Ее детали продолжают уточняться, а некоторые важные вопросы еще остаются открытыми. Одна из важнейших неизвестных — природа темной материи, которая проявляет себя гравитационным притяжением галактик и скоплений. Имеются веские основания считать, что темная материя состоит не из нуклонов и электронов, а, скорее, из каких-то еще не открытых частиц. От масс и взаимодействия этих частиц зависят детали процесса формирования галактик, но не общая картина, очерченная на рисунке 4.3.
Рис. 4.3. Краткая история Вселенной.
Поистине удивительно, что мы можем наблюдать Вселенную такой, какой она была 14 миллиардов лет назад, и точно описывать события, происходившие спустя долю секунды после Большого взрыва. Это подводит нас невероятно близко к моменту творения. Но что в действительности случилось в тот момент, как всегда, остается загадкой. На самом деле при более близком знакомстве Большой взрыв выглядит даже более странным, чем казался до сих пор.
Глава 5
Инфляционная Вселенная
Можно противостоять вторжению армии, но не идеи, чье время пришло.
Виктор Гюго
Космические пазлы
Представим, что однажды мы получаем из далекой галактики радиограмму, гласящую: "Элвис жив". Мы направляем антенну на другую галактику и с удивлением получаем точно такое же сообщение! Изрядно озадаченные, мы переводим антенну с одной галактики на другую, но отовсюду получаем все то же послание. Один из выводов, к которому мы придем, состоит в том, что мир полон фанатов Элвиса; другой — что все они общаются между собой. Ведь как иначе им удалось бы объявиться с одинаковыми сообщениями?
Как ни глупо это может показаться, но такой пример весьма схож с той ситуацией, в которой мы оказались, наблюдая Вселенную. Интенсивность микроволнового излучения, приходящего к нам со всех сторон в небе, в высшей степени постоянна, а значит, распределение плотности и температуры Вселенной в те времена, когда испускалось это излучение, были исключительно однородными. Из этого наблюдения вытекает наличие определенного взаимодействия между излучающими областями, которое приводит к выравниванию плотностей и температур. Парадокс, однако, в том, что для протекания подобных процессов с момента Большого взрыва прошло слишком мало времени.
Корень проблемы связан с неспособностью физических взаимодействий распространяться быстрее света. Со времени Большого взрыва электромагнитные волны удалились от мест, где они были испущены, на 40 миллиардов световых лет. Это расстояние называют радиусом горизонта. Оно ставит предел тому, как далеко мы можем видеть Вселенную, и задает максимальное расстояние, на котором могла быть установлена связь. Космическое излучение, которое мы наблюдаем, было испущено вскоре после Большого взрыва и приходит к нам с расстояний, примерно равных радиусу горизонту. Рассмотрим теперь излучение, приходящее с двух противоположных направлений на небе (рис. 5.1). Области, где было испущено это излучение, разделены сейчас удвоенным расстоянием до горизонта, а значит, они никак не могли взаимодействовать. Тем более они не могли обмениваться теплом, чтобы уравновесить свою температуру.
Рис. 5.1. Космическое излучение, приходящее с двух противоположных направлений на небе, испущено в областях, которые ныне разделены двойным расстоянием до горизонта.
В более ранние времена эти две области были ближе друг к другу, и может показаться, что это помогло бы им прийти в равновесие. Но в действительности раньше это было еще затруднительнее. Дело в том, что с удалением в прошлое радиус горизонта сокращается быстрее, чем расстояние между областями. В момент последнего рассеяния, когда испускалось излучение, наблюдаемая часть Вселенной была разбита на тысячи целеньких областей, которые не могли сообщаться друг с другом. Итак, мы приходим к выводу, что никакой физический процесс не мог сделать огненный шар однородным, если бы он не был таким с самого начала.
Эту загадочную особенность Большого взрыва часто называют проблемой горизонта . Единственное объяснение удивительной однородности плотности и температуры в ранней Вселенной состоит в том, что такой сделал новорожденную Вселенную Большой взрыв. Логически такое "объяснение" совершенно правомерно. Физические условия в сингулярности не определены, так что сразу после Большого взрыва можно постулировать любое физическое состояние. Однако очень трудно отделаться от чувства, что это совершенно ничего не объясняет.
Другая удивительная особенность Большого взрыва состоит в тонкой сбалансированности вспышки, заставившей разбегаться частицы, и силы притяжения, которая замедляет расширение. Если бы плотность материи во Вселенной была больше, ее гравитационного притяжения хватило бы, чтобы остановить расширение и в итоге заставить Вселенную вновь сколлапсировать. При немного меньшей плотности Вселенная расширяется бесконечно. Наблюдаемая плотность с точностью до нескольких процентов равна критической, отвечающей пограничной линии между этими двумя режимами. Это очень странно и требует объяснения.
Трудность связана с тем, что в ходе космической эволюции Вселенная удаляется от критической плотности. Если, например, мы начинаем со значения на один процент выше критического, то менее чем через минуту получим удвоенную критическую плотность, а уже через три с небольшим минуты вселенная вновь сожмется в точку. Аналогично, если начать с плотности, уступающей критической на один процент, то через год она станет в 300 000 раз ниже критической. Во вселенной с такой низкой плотностью никогда не образуются звезды и галактики; в ней не будет ничего, кроме крайне разреженного газа без каких-либо образований. Чтобы спустя 14 миллиардов лет — то есть при нынешнем возрасте Вселенной — ее плотность оставалась почти равной критической, начальное состояние должно быть выверено с хирургической точностью. Вычисления показывают, что она не должна отличаться больше чем на 1/100000000000000 долю процента.
Все это тесно соотносится с вопросом о геометрии Вселенной. Благодаря Фридману мы знаем о связи между плотностью Вселенной и ее крупномасштабной геометрией. Вселенная замкнута, если плотность выше критической, открыта — при более низкой плотности и плоская, если плотность в точности равна критической. Таким образом, вместо того чтобы спрашивать, почему плотность Вселенной так близка к критической, можно с тем же успехом задаться вопросом, почему геометрия пространства так близка к плоской. Поэтому часто говорят не о загадке тонкой настройки, а о проблеме плоской геометрии Вселенной .
Проблемы горизонта и плоской геометрии были осознаны в 1960-х годах, но почти не обсуждались, поскольку не было ровным счетом никаких идей, как за них взяться. К ним нельзя подступиться, не сталкиваясь с куда большей скрывающейся за ними загадкой: что же в действительности случилось в момент Большого взрыва? Какова была природа силы, которая вызвала космическую вспышку и заставила частицы разлетаться друг от друга? Поскольку почти за полвека на этом направлении не было достигнуто никакого прогресса, физики стали привыкать мысли, что это один из тех вопросов, которые не следует задавать, поскольку либо они лежат за пределами физики, либо физика к ним еще не готова. Так что когда Алан Гут в 1980 году совершил впечатляющий прорыв и предложил способ одним махом справиться с несколькими неподатливыми космологическими загадками, это оказалось полной неожиданностью.[31]
Гут выдвинул идею, согласно которой за раздувание Вселенной отвечает отталкивающая гравитация. Он предположил, что ранняя Вселенная содержала очень необычную материю, которая порождала мощные силы гравитационного отталкивания. Если вы когда-нибудь попробуете прочесть лекцию о подобных идеях, лучше вам припасти в кармане кусок антигравитационного вещества или по крайней мере подготовить очень хорошие аргументы в пользу его существования. К счастью для Гута, он не изобретал никаких волшебных материалов. Ведущие теории элементарных частиц уже наперебой предлагали их под названием ложного вакуума.
Ложный вакуум
"А ты можешь из ничего что-нибудь сделать, дяденька?" — "Нет, дружок, из ничего не выйдет ничего".
Шекспир, "Король Лир" (пер. Т.Л. Щепкиной-Куперник)
Вакуум — это пустое пространство. Его часто используют как синоним слова "ничто". Вот почему идея энергии вакуума показалась такой странной, когда ее впервые выдвинул Эйнштейн. Однако под влиянием достижений теории элементарных частиц за последние три десятилетия отношение физиков к вакууму коренным образом поменялось. Исследования вакуума продолжаются, и чем больше мы узнаем о нем, тем он кажется сложнее и удивительнее.
Согласно современным теориям элементарных частиц, вакуум — это физический объект; он может быть заряжен энергией и может находиться в разнообразных состояниях. В терминологии физиков эти состояния называют разными вакуумами . Типы элементарных частиц, их массы и взаимодействия определяются лежащим в основе вакуумом. Взаимосвязь между частицами и вакуумом подобна той, что существует между звуковыми волнами и материалом, по которому они распространяются. Вакуум, в котором мы живем, находится в наинизшем энергетическом состоянии, его называют "истинным вакуумом".[32]
Физики собрали массу знаний о частицах, который населяют этот тип вакуума, и силах, действующих между ними. Сильное ядерное взаимодействие, например, связывает протоны и нейтроны в атомных ядрах, электромагнитные силы удерживают электроны на их орбитах вокруг ядер, а слабое взаимодействие отвечает за поведение неуловимых легких частиц, называемых нейтрино. В соответствии со своими именами эти три взаимодействия обладают очень разной силой, причем электромагнитное взаимодействие занимает промежуточное положение между сильным и слабым.
Свойства элементарных частиц в других вакуумах могут быть совершенно иными. Неизвестно, сколько существует разных вакуумов, но физика элементарных частиц позволяет предположить, что их, вероятно, должно быть еще по крайней мере два, причем обладающих большей симметрией и меньшим разнообразием частиц и взаимодействий. Первый из них — это так называемый электрослабый вакуум, в которое электромагнитное и слабое взаимодействия имеют одинаковую силу и проявляются как составляющие одной объединенной силы. Электроны в этом вакууме имеют нулевую массу и неотличимы от нейтрино. Они движутся со скоростью света и не могут удерживаться внутри атомов. Неудивительно, что мы живем не в этом типе вакуума.
Второй — это вакуум Великого объединения , в котором сливаются все три типа взаимодействий между частицами. В этом высокосимметричном состоянии нейтрино, электроны и кварки (из которых состоят протоны и нейтроны) становятся взаимозаменимыми. Если электрослабый вакуум почти наверняка существует, то вакуум Великого объединения — гораздо более умозрительная конструкция. Теории элементарных частиц, которые предсказывают его существование, привлекательны с теоретической точки зрения, но задействуют чрезвычайно высокие энергии, а их наблюдательные подтверждения немногочисленны и в основном носят косвенный характер.
Каждый кубический сантиметр электрослабого вакуума содержит колоссальную энергию и — согласно соотношению Эйнштейна между массой и энергией — громадную массу, около десяти миллионов триллионов тонн (это примерно масса Луны). Сталкиваясь с такими огромными числами, физики переходят на сокращенную запись чисел, выражая их степенями десятки. Триллион — это единица, за которой следует 12 нулей; его записывают как 1012 . Десять миллионов триллионов — это единица с 19 нулями; то есть плотность массы электрослабого вакуума составляет 1019 тонн на кубический сантиметр. Для вакуума Великого объединения плотность массы оказывается еще больше, причем чудовищно больше — в 1048 раз. Излишне упоминать, что этот вакуум никогда не создавался в лаборатории: на это потребовалось бы много больше энергии, чем доступно при современных технологиях.
По сравнению с этими ошеломляющими величинами энергия обычного истинного вакуума ничтожна. Долгое время считалось, что она в точности равна нулю, однако недавние наблюдения указывают на то, что вакуум может обладать небольшой положительной энергией, которая эквивалентна массе трех атомов водорода на кубический метр. Значение этого открытия прояснится в главах 9, 12 и 14.
Высокоэнергичные вакуумы называют "ложными", поскольку, в отличие от истинного вакуума, они неустойчивы. Спустя короткое время, обычно малую долю секунды, ложный вакуум распадается, превращаясь в истинный, а его избыточная энергия высвобождается в виде огненного шара из элементарных частиц. В следующих главах мы гораздо подробнее рассмотрим процесс распада вакуума.
Если вакуум обладает энергией, то, согласно Эйнштейну, он должен иметь и натяжение.[33]Но, как мы обсуждали в главе 2, натяжение создает отталкивающий гравитационный эффект. В случае вакуума отталкивание в три раза сильнее, чем гравитационное притяжение, вызванное его массой, так что в сумме получается очень сильное отталкивание. Эйнштейн использовал эту антигравитацию вакуума, чтобы уравновесить гравитационное притяжение обычной материи в своей стационарной модели мира. Он обнаружил, что баланс достигается, когда плотность массы материи в два раза превосходит вакуумную. Гут предложил другой план: вместо уравновешивания Вселенной он хотел ее раздуть. Поэтому он позволил отталкивающей гравитации ложного вакуума господствовать, не встречая сопротивления.
Космическая инфляция
Что бы случилось, если бы в далеком прошлом пространство Вселенной находилось в состоянии ложного вакуума? Если плотность материи в ту эпоху была меньше, чем требуется для уравновешивания Вселенной, тогда доминировала бы отталкивающая гравитация. Это вызвало бы расширение Вселенной, даже если бы первоначально она не расширялась.
Чтобы сделать наши представления более определенными, будем считать, что Вселенная замкнута. Тогда она раздувается подобно воздушному шару на рисунке 3.1. С ростом объема Вселенной материя разрежается, и ее плотность падает. Однако плотность массы ложного вакуума является фиксированной константой; она всегда остается одинаковой. Так что очень быстро плотность материи становится пренебрежимо малой, мы остаемся с однородным расширяющимся морем ложного вакуума.
Расширение вызывается натяжением ложного вакуума, превосходящим притяжение, связанное с плотностью его массы. Поскольку ни одна из этих величин не меняется со временем, темп расширения остается с высокой точностью постоянным. Этот темп характеризуют пропорцией, в которой Вселенная расширяется за единицу времени (скажем, за одну секунду). По смыслу эта величина очень похожа на темп инфляции в экономике — процентное увеличение цен за год. В 1980 году, когда Гут вел семинар в Гарварде, уровень инфляции в США составлял 14%. Если бы это значение оставалось неизменным, цены удваивались бы каждые 5,3 года. Аналогично, постоянный темп расширения Вселенной подразумевает, что существует фиксированный интервал времени, на протяжении которого размер Вселенной увеличивается вдвое.
Рис. 5.2. Алан Гут в своем кабинете в Массачусетском технологическом институте. Гут — гордый победитель конкурса на самый захламленный кабинет, организованный в 1995 году газетой Boston Globe .
Рост, который характеризуется постоянным временем удвоения, называют экспоненциальным. Известно, что он очень быстро приводит к гигантским числам. Если сегодня кусок пиццы стоит 1 доллар, то через 10 циклов удвоения (53 года в нашем примере) его цена составит 1024 доллара, а через 330 циклов достигнет 10100 долларов. Это колоссальное число, единица, за которой следует 100 нулей, имеет специальное название — гугол. Гут предложил использовать в космологии термин инфляция для описания экспоненциального расширения Вселенной.
Время удвоения для вселенной, заполненной ложным вакуумом, невероятно короткое. И чем выше энергия вакуума, тем оно короче. В случае электрослабого вакуума вселенная расширится в гугол раз за одну тридцатую микросекунды, а в присутствии вакуума Великого объединения это случится в 1026 раз быстрее. За столь короткую долю секунды область размером с атом раздуется до размеров, намного превосходящих всю наблюдаемую сегодня Вселенную.
Поскольку ложный вакуум нестабилен, он в конце концов распадается, и его энергия зажигает огненный шар из частиц. Это событие обозначает конец инфляции и начало обычной космологической эволюции. Тем самым, из крошечного исходного зародыша мы получаем громадных размеров горячую расширяющуюся Вселенную. А в качестве дополнительного бонуса в этом сценарии удивительным образом исчезают проблемы горизонта и плоской геометрии, характерные для космологии Большого взрыва.
Суть проблемы горизонта состоит в том, что расстояния между некоторыми частями наблюдаемой Вселенной таковы, что они, по-видимому, всегда были больше расстояния, пройденного светом с момента Большого взрыва. Это предполагает, что они никогда не взаимодействовали друг с другом, а тогда трудно объяснить, как они достигли почти точного равенства температур и плотностей. В стандартной теории Большого взрыва путь, пройденный светом, растет пропорционально возрасту Вселенной, тогда как расстояние между областями увеличивается медленнее, поскольку космическое расширение замедляется гравитацией. Области, которые не могут взаимодействовать сегодня, смогут влиять друг на друга в будущем, когда свет покроет наконец разделяющее их расстояние. Но в прошлом пройденное светом расстояние становится еще короче, чем надо, так что, если области не могут взаимодействовать сегодня, они тем более не были способны к этому раньше. Корень проблемы, таким образом, связан с притягивающей природой гравитации, из-за которой расширение постепенно замедляется.
Однако во вселенной с ложным вакуумом гравитация отталкивающая, и вместо того, чтобы замедлять расширение, она ускоряет его. При этом положение меняется на противоположное: области, которые могут обмениваться световыми сигналами, в будущем потеряют эту возможность. И, что более важно, те области, которые сегодня недосягаемы друг для друга, должны были взаимодействовать в прошлом. Проблема горизонта исчезает!
Проблема плоского пространства разрешается столь же легко. Оказывается, что Вселенная удаляется от критической плотности, только если ее расширение замедляется. В случае ускоренного инфляционного расширения все обстоит наоборот: Вселенная приближается к критической плотности, а значит, становится более плоской. Поскольку инфляция увеличивает Вселенную в колоссальное число раз, нам видна лишь крошечная ее часть. Эта наблюдаемая область выглядит плоской подобно нашей Земле, которая тоже кажется плоской, если смотреть на нее, находясь вблизи поверхности.
Итак, короткий период инфляции делает Вселенную большой, горячей, однородной и плоской, создавая как раз такие начальные условия, которые требуются для стандартной космологии Большого взрыва.
Теория инфляции начала покорять мир. Что же касается самого Гута, то его пребывание в статусе постдока закончилось. Он принял предложение от своей альма-матер, Массачусетского технологического института, где и продолжает работать поныне.
Это могло бы стать счастливым финалом для теории инфляции, если бы не одна серьезная неприятность: теория не работала.
Глава 6