Волновые процессы. Продольные и поперечные волны

Колебания, возбужденные в какой-либо точки среды (твердой, жидкой, газообразной), распространяются в ней с конечной скоростью, зависящей от свойств среды, передаваясь от одной точки среды к другой. При изучении распространения колебаний среда рассматривается как сплошная и обладающая упругими свойствами.

Процесс распространения колебаний в сплошной среде, периодический во времени и пространстве, называется волновым процессом (или волной). При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передается лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн независимо от их природы является перенос энергии без переноса вещества.

Среди волн выделяют следующие типы: волны на поверхности жидкости, упругие и электромеханические.

Упругими (механическими) волнами называется механические возмущения, распространяющиеся в упругой среде. Упругие волны бывают продольные и поперечные. В продольных частицы среды колеблются в направлении распространения волны, в поперечных – перпендикулярно направлению распространения волны.

В жидкостях и газах возникают только продольные волны, а в твердых телах – как продольные, так и поперечные.

Характеристики звуковых волн

Звуковыми (акустическими) называют распространяющиеся в среде упругие волны с частотами 16 – 20 000 Гц. Колебания с частотами ν<16 Гц называют инфразвуковыми, ν >20 кГц – ультразвуковыми.

Область пространства, в которой распространяются звуковые волны, называют звуковым полем.

В звуковом поле периодически колеблются частицы среды, периодически меняются их скорости и силы давления (в жидкости или газе) или нормальные и касательные напряжения (в твердых телах).

Звуковое давление – разность между мгновенным значением давления и средним давлением за определенный промежуток времени (рис. 5.1).

Волновые процессы. Продольные и поперечные волны - student2.ru Волновые процессы. Продольные и поперечные волны - student2.ru Волновые процессы. Продольные и поперечные волны - student2.ru

Рис. 5.1. Звуковое давление

Человек воспринимает не мгновенное значение давления, а его среднеквадратичное:

Волновые процессы. Продольные и поперечные волны - student2.ru (5.1)

где Тус – время усреднения.

Интенсивность звука может характеризоваться амплитудой колебаний скоростью, давлением, напряжениями. Но целесообразно ввести единую энергетическую характеристику. Такая характеристика была предложена Умовым.

Поток энергии (I) – энергия, переносимая распространяющейся волной через единицу площади за единицу времени. Вектор потока энергии направлен в сторону распространения волны и носит название вектора Умова.

Величина потока энергии измеряется в Вм/м2 и для звукового поля называется интенсивностью звука или силой звука.

Интенсивность и звуковое давление связаны зависимостью:

Волновые процессы. Продольные и поперечные волны - student2.ru . (5.2)

Звуковые волны распространяются с определенной скоростью.

Скорость распространения звука в различных средах различна. Как уже указывалась, в твердых телах могут распространяться упругие колебания двух типов: продольные и поперечные. В изотропных твердых телах скорости этих двух типов колебаний равны соответственно:

Волновые процессы. Продольные и поперечные волны - student2.ru , (5.3)

Волновые процессы. Продольные и поперечные волны - student2.ru , (5.4)

где Е – модуль упругости, Па; G – модуль сдвига, Па; ρ – плотность, кг/м3.

В анизотропных кристаллах упругие свойства и модули упругости различны по разным направлениям. Поэтому скорость звука в анизотропных телах зависит от направления распространения волны по отношению к кристаллографическим осям, а для поперечных волн – еще и от ориентации плоскости их поляризации.

В жидкостях могут распространяться только продольные звуковые волны сжатия и разрежения. Их скорость выражается формулой

Волновые процессы. Продольные и поперечные волны - student2.ru , (5.5)

где K – модуль сжатия жидкости.

Скорость распространения звука в идеальном газе определяется выражением

Волновые процессы. Продольные и поперечные волны - student2.ru , (5.6)

где Волновые процессы. Продольные и поперечные волны - student2.ru – показатель адиабаты; СР и СV – теплоемкость газа при постоянном давлении и постоянном объеме; р – статическое давление среды, Па; R – универсальная газовая постоянная, Дж/моль·К; Т – термодинамическая температура газа, К; μ – молярная масса газа, кг/моль.

Для одноатомных газов γ =1,67, а для многоатомных приближается к 1. Для воздуха γ = 1,41.

Эффект Доплера в акустике

Эффектом Доплера называется изменение частоты колебаний, воспринимаемых приемником, при движении источника этих колебаний и приемника относительно друг друга. Из опыта известно, что тон гудка поезда повышается по мере приближения к платформе и понижается при удалении, т. е. движение источника колебаний (гудка) относительно приемника (уха) изменяет частоту принимаемых колебаний.

Предположим, что источник и приемник звука движется вдоль соединяющей их прямой; VИСТ и VПР – скорости движения источника и приемника, причем они положительны, если источник (приемник) приближается к приемнику (источнику), и отрицательны – если удаляется. Частота колебаний источника равна ν0.

1. Источник и приемник покоятся относительно среды:

VИСТ = VПР =0. Если V – скорость распространения звуковой волны в рассматриваемой среде, то длина волны Волновые процессы. Продольные и поперечные волны - student2.ru . Распространяясь в среде, волна достигнет приемника и вызовет колебание его звукочувствительного элемента с частотой

Волновые процессы. Продольные и поперечные волны - student2.ru ,

следовательно, частота ν, которую зарегистрирует приемник, равна частоте ν0, с которой звуковая волна излучается источником.

2. Приемник приближается к источнику, а источник покоится, т. е. VПР>0, VИСТ = 0. В данном случае скорость распространения волны относительно приемника станет равной V + Vпр. Так как длина волны при этом не меняется, то

Волновые процессы. Продольные и поперечные волны - student2.ru , (5.7)

т. е. частота колебаний, воспринимаемых приемником, в V + Vпр/V раз больше частоты колебаний источника.

3. Источник приближается к приемнику, а приемник покоится, т. е. VИСТ>0, VПР = 0. Скорость распространения колебаний зависит лишь от свойств среды, поэтому за время, равное периоду колебаний источника, излученная им волна пройдет в направлении к приемнику расстояние V·T (равное длине волны λ) независимо от того, движется ли источник или покоится. За то же время источник пройдет в направлении волны расстояние VИСТ T, т. е. длина волны в направлении движение сократится и станет равной Волновые процессы. Продольные и поперечные волны - student2.ru (рис. 5.2).

 
  Волновые процессы. Продольные и поперечные волны - student2.ru

Рис. 5.2. Изменение длины волны при движении источника

Волновые процессы. Продольные и поперечные волны - student2.ru

Тогда

Волновые процессы. Продольные и поперечные волны - student2.ru , (5.8)

т. е. частота ν колебаний, воспринимаемых приемником, возрастает в V/(V-VИСТ) раз.

В формулах (5.7), (5.8) при VИСТ<0 и VПР<0 знак будет обратным.

4. Источник и приемник движутся относительно друг друга.

Используя результаты, полученные для случаев 2 и 3, можно записать выражение для частоты колебаний, воспринимаемых источником, в общем случае:

Волновые процессы. Продольные и поперечные волны - student2.ru , (5.9)

причем «+» в числителе соответствует приближению приемника к источнику; «–» – его удалению от источника; в знаменателе «+» соответствует удалению источника от приемника, знак «–» – приближению его к приемнику.

Если направление VИСТ и VПР не совпадают с проходящей через источник и приемник прямой, то вместо этих скоростей надо брать их проекции на направление этой прямой.

Наши рекомендации