Тема 4.3. Принцип возрастания энтропии
OОсновные понятия
Формы энергии: тепловая, химическая, механическая, электрическая
Первый закон термодинамики — закон сохранения энергии при ее превращениях
Первый закон термодинамики как утверждение о невозможности вечного двигателя первого рода
Изолированные и открытые системы
Второй закон термодинамики как принцип возрастания энтропии в изолированных системах
Изменение энтропии тел при теплообмене между ними
Второй закон термодинамики как принцип направленности теплообмена (от горячего к холодному)
Второй закон термодинамики как утверждение о невозможности вечного двигателя второго рода
Энтропия как мера молекулярного беспорядка
Энтропия как мера информации о системе
Второй закон термодинамики как принцип нарастания беспорядка и разрушения структур
Закономерность эволюции на фоне всеобщего роста энтропии
Энтропия открытой системы: производство энтропии в системе, входящий и выходящий потоки энтропии
Термодинамика жизни: добывание упорядоченности из окружающей среды
& Краткое содержание
Основные понятия
Наиболее общей и универсальной количественной мерой физических и химических, а также некоторых биологических форм движения материи является энергия.
Энергия —
- это физическая величина, являющаяся общей количественной мерой движения и взаимодействия всех видов материи, всех ее структурных уровней;
- это способность тел совершать изменения во внешнем мире.
Изучением энергии, превращением энергии из одной формы в другие занимается термодинамика. Слово термодинамика происходит от греческого слова «термос» (тепло) и «динамос» (сила, мощь).
Законы термодинамики относятся к числу наиболее общих законов природы, которым подчиняются как живые, так и неживые тела. Этим законам подчиняются любые превращения энергии.
Исследованием энергии в макроскопических системах(т.е. рассмотрением общих свойств всей системы) занимается классическая (равновесная) термодинамика.
Классическая термодинамика (XIX в.) занималась изучением тепловых явлений без учета молекулярного строения тел.
Предмет исследований классической термодинамики – закрытые системы, т.е. системы, которые не обмениваются энергией, веществом и информацией с окружающей средой.
Неравновесная термодинамика изучает процессы в открытых системах, находящихся далеко от равновесного состояния.
Открытые системы – термодинамические системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне и стока вовне вещества, энергии и информации (т.е. обмениваются с окружающей средой веществом (а также энергией и импульсом)).
К наиболее важному типу открытых систем относятся химические системы, в которых непрерывно протекают химические реакции, происходит поступление реагирующих веществ извне, а продукты реакций отводятся. Биологические системы, живые организмы можно также рассматривать как открытые химические системы.
2. Законы (начала) классической термодинамики
Первое начало термодинамики
закон сохранения и превращения энергии – количество теплоты, сообщаемое системе, идет на изменение ее внутренней энергии и на совершение системой работы против внешних сил (современная формулировка). – «энергия не создается и не уничтожается, но может превращаться из одной формы в другую»
Согласно этому закону, при любых химических, физических взаимодействиях, при любом перемещении вещества, при любом изменении температуры энергия не возникает и не исчезает, только превращается из одного вида в другой.
Закон подразумевает, что в результате превращений энергии никогда нельзя получить ее больше, чем затрачено: выход энергии всегда равен ее затратам, нельзя из ничего получить нечто, за все нужно платить.
Закон сохранения энергии – один из основных законов природы. Он справедлив для любых явлений и процессов, протекающих в природе или создаваемых человеком.
Он связан с абсолютностью, несотворимостью и неуничтожимостью движения материи; охватывает все возможные формы движения, любые виды взаимодействий и в изолированных системах выполняется с абсолютной точностью. Этот закон устанавливает общее свойство качественно различных форм движения материи переходить друг в друга в строго определенных количествах. Закон выражает связь между различными видами энергии в процессах, где происходит превращение форм движения материи. Он также может выражать неизменность величины определенного вида энергии, если не происходит изменения форм движения материи.
Значение этого закона состоит в том, что он фактически ликвидирует границы между отдельными науками и областями естественных наук и увязывает в единое целое все природные явления.
Но можно подумать, что энергия всегда будет существовать в достаточном количестве. Однако если вы будете ездить на автомобиле, наполнив бак бензином, или у вас будет постепенно садиться батарейка карманного фонарика, вы будете что-то терять. Что? Качество энергии.
Множество опытов показывают, что в процессе любого превращения энергии из одного вида в другой всегда происходит снижение качества энергии, или уменьшается количество полезной энергии.
Под качеством энергии понимают меру ее эффективности, или способность совершать полезную работу.
Второе начало термодинамики
Все, что мы наблюдаем в природе, сформулировано во 2-м законе термодинамики. Возможно несколько формулировок:
1)
при любом переходе из одного вида в другой некоторое количество первичной энергии всегда теряет свое качество и, следовательно, способность выполнять полезную работу
2)
невозможна самопроизвольная передача теплоты от более холодного к более горячему телу
3)
2-ой закон термодинамики подразумевает также, что мы практически никогда не можем восстановить или повторно использовать высококачественную энергию для выполнения полезной работы. Будучи однажды использованной, энергия, которая содержалась в хлебе, бензине, каменном угле, куске урана, выполняет работу и рассеивается в окружающей среде в виде низкокачественного тепла.
Результаты многочисленных наблюдений показывают, что в отличие от механических процессов, тепловые процессы необратимы.
Всякая замкнутая система с течением времени стремится перейти в состояние термодинамического равновесия. Достигнув состояния термодинамического равновесия, замкнутая физическая система остается в нем сколь угодно долго.
Таким образом, все термодинамические процессы в замкнутых физических системах являются необратимыми и носят направленный характер.
Австрийский физик Людвиг Эдуард Больцман (1844—1906) утверждал, что, когда произвольная система тел будет предоставлена сама себе и не будет подвержена действию других тел, всегда может быть указано направление, в котором будет происходить каждое изменение состояния.
Направление протекания процессов характеризуется функцией состояния — энтропией, которая неотрицательна, максимальна в состоянии термодинамического равновесия, и отсюда следует вывод:
4)
всякая замкнутая система тел стремится к определенному состоянию (состоянию термодинамического равновесия), для которого энтропия будет максимальной
Направление и течение всех реальных процессов задается изменением S. Все реальные процессы необратимы (в изолированной системе) и направлены в сторону увеличения S.
Л. Больцман дал статистическую интерпретацию второго начала термодинамики и вскрыл его вероятностный характер.
Состояние термодинамического равновесия обладает наибольшей вероятностью осуществления. При переходе системы из неравновесного состояния в состояние равновесия вероятность состояния возрастает, система переходит от состояния порядка к состоянию хаоса, беспорядка.
Термин «энтропия» (S) употребляется для определения степени неупорядоченности состояния вещества.
Энтропия (от гр. trope - обращение, изменение) – это мера хаотичности, беспорядка или неупорядоченности в системе.
Например, частицы газа находятся в хаотичном движении, они более неупорядочены, чем частицы твердых тел. Следовательно, энтропия газов больше, чем энтропия твердых тел.
Вещество высокого качества, хорошо упорядоченное или сконцентрированное или высококачественная энергия – обладает низкой энтропией.
Вещество низкого качества, рассеянное или энергия, рассеивающаяся в окружающую среду, характеризуется высокой энтропией.
Таким образом, энергия низкого качества, обладающая высокой энтропией, рассеяна настолько, что не способна выполнять полезную работу, то есть высококачественная энергия (низкая энтропия) в отличие от вещества не может быть восстановлена или использована повторно.
Рассмотрим в действии 2-ой закон термодинамики.
Пример 1-й - когда движется автомобиль, в механическую энергию, приводящую его в движение, и электрическую энергию всех его систем превращается всего лишь около 10% получаемой при сгорании бензина высококачественной химической энергии. Остальные 90% в виде бесполезного тепла рассеиваются в окружающей среде и, в конечном счете, теряются в космическом пространстве.
Пример 2-й - когда электрическая энергия проходит через проволоку накаливания, 5% этой энергии превращается в полезное световое излучение, а 95% в виде тепла рассеивается в окружающей среде.
Пример 3-й - когда вы едите растительную пищу, например яблоко, его высококачественная химическая энергия в Вашем организме превращается в высококачественную электрическую и механическую энергии, используемые для движения и обеспечения других процессов жизнедеятельности, а также в низкокачественное тепло.
Таким образом, общее количество концентрированной высококачественной энергии, которую мы можем получать из всех источников, постоянно сокращается, превращаясь в низкокачественную энергию.
Все виды энергии (потенциальная, кинетическая, тепловая, химическая, электрическая, магнитная) непосредственно служат источниками работы, производимой в природе и технике. Работа представляет собой превращение одного вида энергии в другой. Энтропия может служить мерой обесценения энергии.
Можно считать ценностью энергии возможность ее превращения в полезную работу. Чем больше выделяется теплоты, то есть чем больше S, тем меньше полезная работа, то есть тем меньше ценность энергии.
Третье начало термодинамики (закон Нернста):
при стремлении температуры к абсолютному нулю энтропия любой системы стремится к конечному пределу, не зависящему от давления, плотности или фазы. Т.е. ни в каком процессе, связанном с изменением энтропии, достижение абсолютного нуля невозможно, к нему можно лишь бесконечно приближаться.