Выключатели переменного тока высокого напряжения
МАЛОМАСЛЯНЫЕ ВЫКЛЮЧАТЕЛИ
В маломасляных выключателях с целью уменьшения габаритных размеров и массы изоляция в основном осуществляется твердыми материалами. Широко распространены маломасляные выключатели серии ВМП-10 (выключатель масляный подвесного типа), предназначенные для работы при номинальном напряжении 10 кВ. Номинальный ток в зависимости от контактной системы изменяется от 600 до 3200 А. Номинальный ток, отключения достигает 31,5 кА при напряжении 10 кВ, номинальная мощность 550 MB-А. Полное время отключения примерно 0,12—0,13 с при номинальном токе отключения.
Контактная система, ДУ и устройство, превращающее вращательное движение рычагов в поступательное движение контактов, смонтированы в виде единого блока полюса 1 (рис. 4). Этот блок с помощью опорных изоляторов 2 крепится к стальной раме 3. В верхней головке полюса S расположены подвижный контакт и механизм, в нижней 9 — неподвижный контакт. В раме установлены вал выключателя 5, отключающая пружина, пружинный буфер включения и масляный буфер отключения 6. Вал 5 связан с выходным рычагом механизма полюса 7 с помощью прочной изоляционной тяги 4.
При включении изоляционная тяга 4 поворачивает выходной рычаг полюса 7 против часовой стрелки и производит замыкание контактов. Отключающая пружина при этом растягивается, а пружинный буфер включения сжимается. Этот буфер развивает большую силу на небольшом ходе, соответствующем ходу подвижного контакта в розетке, и создает необходимую для гашения дуги скорость перемещения подвижного контакта.
Разрез нижней части блока полюса представлен на рис. 5. Для уменьшения обгорания концы ламелей розеточного контакта 1, подвергающиеся воздействию дуги, облицованы металлокерамикой. Нижняя головка 2 имеет съемную крышку 3, на которой и укреплен розеточный контакт 1, При ревизиях и ремонтах съемная крышка 3 вынимается вместе с розеточным контактом 7.
Рис 4 Маломасляный выключатель ВМП-10
ДУ газового дутья заключено в стеклоэпоксидный цилиндр 4. ДУ собирается из пластин фибры, гетинакса и электрокартона, в которых вырезаны отверстия, образующие каналы и полости для гашения дуги. Каждый из трех каналов (один из них виден на рис. 5) вначале идет горизонтально, а затем вертикально. Все пластины ДУ стягиваются фибровыми или текстолитовыми шпильками. Камера заполнена трансформаторным маслом 7.
Для ограничения давления при больших токах и создания необходимого давления вблизи нулевого значения тока ДУ имеет воздушный буфер А (рис. 5). Давление в ДУ достигает наибольшего значения вблизи максимального значения тока. Под действием этого давления масло сжимает воздух в буфере, в нем аккумулируется энергия. При приближении тока к нулю мощность в дуге и давление резко уменьшаются. Энергия, накопленная в буфере, позволяет создать вблизи нуля тока такое давление, которое необходимо для гашения дуги.
Под действием дуги, возникающей при расхождении контактов, масло разлагается и образующиеся газы создают в камере давление. В тот момент, когда тело подвижного контакта 6 (свеча) откроет первую щель, возникает газовое дутье, и при прохождении тока через нуль возможно гашение дуги. Обдув дуги газами еще более усиливается после открытия свечей второго и третьего каналов.
Рис. 5. Нижняя часть полюса выключателя ВМП-10
Обычно гашение дуги с большим током происходит после открытия первых двух щелей.
При отключении малых токов в камере ДУ давление невелико и дуга не гаснет после открытия всех трех щелей, а затягивается в масляные карманы 5 в верхней части ДУ. Когда подвижный контакт, поднимаясь вверх, входит в первый снизу карман 5', под действием дуги масло в кармане разлагается и газы стремятся выйти вниз, охлаждая дуговой промежуток. Процесс усиливается по мере включения новых карманов. В результате удается надежно отключать критические токи (1—2 кА).
Газы, образующиеся в процессе гашения дуги, выходят через зигзагообразный канал в верхней головке полюса.
Рис. 6. Верхняя часть полюса выключателя ВМТ-110
Рис. 7. Дугогасительная камера встречно-поперечного дутья
Во избежание выброса масла из полюса в его верхней части установлен специальный маслоотделитель.
При напряжении 110 и 220 кВ пока еще широко используются баковые выключатели с поминальным током отключения 20—40 кА. В 75 % случаев ток КЗ не превышает 20 кА и замена их маломасляными выключателями может дать большой технико-экономический эффект.
Созданы маломасляные выключатели серии ВМТ на напряжение 110 и 220 кВ с номинальным током 1000 А и номинальным током отключения 20 кА. Время отключения 0,08, время включения 0,15 с. Эти выключатели работают в цикле АПВ со временем бестоковой паузы 0,3 с. В трехфазном выключателе ВМТ на напряжение 110 кВ (рис. 9) включение всех трех полюсов производится одним пружинным приводом. Верхняя часть одного полюса показана на рис. 6. На этом рисунке 1 — нижний токоподвод, 2— подвижный контакт круглого сечения, 3— дугогасительная камера, 4 — изолятор, 5 — колпак, 6 — расширительный объем, 7— маслоуказатель, 8 — верхний токоподвод, 9 — неподвижный контакт. Внутренняя полость ДУ герметизирована, и наверху находится расширительный объем 6, в котором имеется воздух или азот при давлении 0,5—1 МПа. При отключении емкостных токов ненагруженных линий наличие расширительного объема облегчает гашение дуги, так как масло воздействует на дугу под давлением 0,5— 1 МПа. Сама дуга из-за малости тока не может создать необходимое давление газа.
ДУ выключателя залито трансформаторным маслом. При отключении контакт 2 движется вниз и между контактами 2 н9 загорается электрическая дуга. В камере быстро поднимается давление. В выключателе используется камера встречно-поперечного дутья (рис. 7). Под давлением образовавшихся газов масляный поток подводится из каналов А и Б перпендикулярно дуге. При соприкосновении с дугой масло образует газопаровую смесь, которая вытекает через дутьевые щели В и Г. При этом столб дуги интенсивно охлаждается и дуга гаснет за 0,02— 0,03 с.
В выключателе применен оригинальный механизм привода контактов (рис. 8). Стальные тросы 3 обвивают шкив 1, сидящий на главном валу 2 механизма управления (на него действуют отключающие пружины и включающий привод). Тросы 3 связаны со стеклопластиковыми тягами 4, которые перемещают подвижный контакт 8. Плавный останов механизма в крайних положениях осуществляется масляным 5 и резиновым 9 буферами. Верхние концы тяг 4 связаны с тросом 7, который перекатывается по блоку 6. Простой и легкий механизм позволяет получить высокий КПД и сообщить контактам скорость при включении до 9 м/с, что обеспечивает надежную работу выключателя в режиме АПВ. При этом требуется пружинный привод с относительно небольшой работой включения (2300 Дж). Заводка включающих пружин выключателя за время 20 с производится электродвигателем мощностью 1,1 кВт.
Рис. 8. Механизм привода контактов выключателя ВМТ-110
Рис. 9. Общий вид выключателя ВМТ-110
Для обеспечения работы при низких температурах (до —60 °С) выключатель снабжен электроподогревающим устройством. Общий вид выключателя дан на рис. 9. Выключатель на напряжение 220 кВ имеет два разрыва на полюс. Каждый полюс смонтирован на отдельной раме. Номинальный ток отключения выключателя 20 кА.
При напряжении выше 220 кВ целесообразно применение нескольких разрывов, соединенных последовательно. В настоящее время маломасляные выключатели с такой компоновкой строятся на напряжение до 500 кВ.
По сравнению с баковыми и воздушными маломасляные выключатели обладают следующими преимуществами:
1. Они имеют меньшие массу и габаритные размеры при малом объеме масла.
2. ДУ всегда готово к работе независимо от наличия сжатого воздуха.
3. Осмотр и ремонт дугогасительных камер и контактов возможен без слива масла, что обеспечивает удобство эксплуатации.
4. Путем применения унифицированных узлов выключатель довольно легко можно выполнить на напряжение до 500 кВ.
Однако эти выключатели имеют и недостатки:
1. Они менее надежны в работе, чем баковые. Изоляционные детали — рубашки, опорная изоляция — подвергаются повышенным механическим нагрузкам. Номинальный ток отключения маломасляных выключателей пока ниже, чем у баковых.
2. Маломасляные выключатели, как правило, не допускают установки встроенных трансформаторов тока.
Благодаря своим преимуществам маломасляные выключатели найдут широкое распространение в установках с напряжением 6—10 кВ.
При напряжении 35—220 кВ масляные выключатели будут вытесняться вакуумными и элегазовыми.
Приводы масляных выключателей - Выключатели высокого напряжения
ВОЗДУШНЫЕ ВЫКЛЮЧАТЕЛИ
а) Выключатель с открытым отделителем. На рис. 16 упрощенно показан воздушный выключатель типа ВВП-35 для электротермических установок. Параметры выключателя: номинальное напряжение 35 кВ, номинальный ток 1250 А, номинальный ток отключения 20 кА, время отключения 0,08 с, номинальное давление 2 МПа. Особенностью выключателя является возможность многократной коммутации номинального тока. Принципиальной особенностью ВВП-35 является наличие отделителя 1, включенного последовательно с ДУ 3. В ДУ продольного дутья ток отключения зависит от отношения lid, где I — расстояние между контактами, d —- диаметр сопла ДУ. Для одностороннего сопла наибольшее значение тока отключения достигается при //rf=0,33. Диаметр сопла d определяется значением тока отключения. После отключения обычно в ДУ устанавливается атмосферное давление и расстояние /=0,33 d может пробиваться восстанавливающимся напряжением. Поэтому последовательно с ДУ включается отделитель, назначение которого создавать надежный изоляционный промежуток после гашения дуги и смыкания контактов ДУ.
Рис. 18 16. Выключатель типа ВВП-35
Рис. 18 17. Дуготасительное устройство выключателя ВВП-35
При отключении сначала расходятся контакты в ДУ и дуга гаснет, затем расходятся контакты разъединителя. После этого подача сжатого воздуха в ДУ прекращается и контакты ДУ смыкаются. Включение выключателя производится замыканием контактов отделителя 1 и 2. Работа узлов выключателя описывается ниже.
Сжатый воздух находится в стальном баке 4. На стеклоэпоксидной трубе 5 расположено ДУ 3. Цепь высокого напряжения присоединяется к выводам 9 и 7. Последовательно с ДУ включены контакты 1, 2, Неподвижный контакт отделителя 2 укреплен на стеклопластиковом цилиндре 8. Привод ножа отделителя осуществляется через изоляционную штангу 6. Для ограничения перенапряжений, возникающих при отключении ненагруженных трансформаторов, дуговой промежуток шунтирован нелинейным резистором 16. При отключении электромагнит воздействует на пусковой клапан 18 и сообщает с атмосферой полость справа от поршня 10. Под действием сжатого воздуха поршень 10 перемещается вправо вниз и открывает главный клапан 11. Сжатый воздух из бака 4 поступает по трубе 5 в ДУ. В ДУ (рис. 17) под действием сжатого воздуха поршень 12 вместе с подвижным трубчатым контактом 13 поднимается вверх. Дуга между контактами 13 и 14 интенсивно охлаждается сжатым воздухом. Предельная длина дуги ограничивается электродом 15. Длительность горения дуги составляет 0,5—1,5 полу периода.
Во время работы ДУ сжатый воздух подается в привод отделителя. После погасания дуги привод переводит нож отделителя 1 в положение, обозначенное пунктиром. После отключения клапан 11 закрывается и под действием пружины 17 контакты ДУ замыкаются. Для включения выключателя изменяется направление потока сжатого воздуха, поступающего в привод отделителя, благодаря чему нож 1 и контакт 2 замыкаются. Из-за невысокой надежности отделителей такие выключатели не применяются в открытых распределительных устройствах (ОРУ). В ОРУ применяются выключатели с газонаполненным отделителем (серии ВВН), в которых контакты отделителя защищены от воздействия окружающей среды. В электротермических установках на напряжение 110 и 220 кВ используются выключатели серии ВВБ.
б) Выключатель с воздухонаполненным отделителем. На рис. 18 показан полюс выключателя серии ВВН с номинальным напряжением 330 кВ, длительным током 2 кА и номинальным током отключения 25 кА. В основании полюса расположены два бака со сжатым воздухом 1 а 3. Дугогасительные камеры 4, снабженные шунтирующими резисторами 5, укреплены на полых фарфоровых изоляторах 2, которые являются воздухопроводом. Сжатый воздух в камеры 4 подается клапаном 6. Каждый полюс имеет восемь дугогасительных камер продольного дутья, включенных последовательно. Воздухонаполненный отделитель состоит из шести дугогасительных элементов 7, шунтированных конденсаторами 8.
Процесс отключения протекает следующим образом: вначале открывается клапан 6, камеры 4 разводят контакты и отключают ток КЗ. Затем открывается клапан 9, расходятся контакты камер отделителя 7 и разрывается ток шунтов. Во все время отключенного состояния выключателя отделитель находится под давлением 2 МПа. Эта конструкция более надежна, чем конструкция с открытым отделителем, так как здесь отделитель защищен от действия окружающей среды. Крупным недостатком выключателя является длительное нахождение фарфоровых изоляторов ДУ отделителя под давлением в отключенном положении выключателя
Рис 18 Выключатель серии ВВН
Опыт эксплуатации показал недостаточно высокую надежность описанной конструкции, поэтому такие выключатели в настоящее время не выпускаются В современных выключателях на напряжение 110 кВ и выше отказались от отделителей и перешли на дугогасительные камеры, которые в отключенном положении наполнены сжатым воздухом.
в) Выключатели с дугогасительными камерами в баке со сжатым
воздухом. Наиболее совершенны воздушные выключатели у которых дугогасительная камера размещается непосредственно в баке со сжатым воздухом На рис 18 19, а показан полюс такого выключателя серии ВВБ на напряжение 110 кВ. Бак со сжатым воз пухом 1 располагается на опорном изоляторе 2, в этом же изоляторе проходят управляющие воздухопроводы, воздух в которых находится под давлением 2,6 МПа Шкаф управления 3 расположен в основании выключателя. ДУ соединяется с внешней цепью токоведущими частями проходных изоляторов 4 Равномерное распределение напряжения между двумя разрывами устройства обеспечивается с помощью конденсаторов 5 Схема устройства представлена на рис 18 19,6, где 5 — шунтирующие конденсаторы, обеспечивающие равенство напряжений на двух разрывах устройства; 6 — основные контакты; 7— вспомогательные; 8— шунтирующие резисторы, служащие для снижения скорости восстановления напряжения Ток через шунтирующие резисторы отключается контактами 7 после гашения дуги в основных разрывах 6. Из рис. 19,6 видно, что корпус бака 1 находится под напряжением.
Рис. 19. Баковый воздушный выключатель серии ВВБ-110; ток откл. 31,5 кА; Iном = 2000 А
В ДУ (рис. 19,б) неподвижный контакт 9 укреплен на конце токоведущего стержня изолятора 10. Подвижный контакт 11 укреплен на траверсе 12, связанной с приводным штоком 13. Выступ 14 на штоке 13 служит для фиксации механизма ДУ во включенном положении с помощью защелок 15.
Во включенном положении полость бака отделена от атмосферы с помощью клапана, закрывающего выхлоп 1. При отключении в привод подается сжатый воздух, под воздействием которого шток 13 перемещается вверх и открывает клапан выхлопа 1, отделяющий полость бака от атмосферы. Дуга между контактами 11 и 9 потоком выходящего в атмосферу воздуха сдувается на точки а и б, где подвергается интенсивному продольному дутью сжатым воздухом. После отключения клапан закрывается и бак разобщается с атмосферой.
В рассмотренной конструкции под высоким давлением находится только стальной бак. Это позволяет повышать давление воздуха в баке до 3,5—4 МПа и увеличивать отключаемый ток. В выключателях серии ВВН на каждый класс напряжения создается по существу новая конструкция.
Это требует больших экономических затрат на производство и эксплуатацию. В современных выключателях используется модульный принцип. ДУ на рис. 19, в, рассчитанное на напряжение 110 кВ, может использоваться при напряжении 220 кВ при том же токе отключения, но два ДУ соединяются последовательно, а опорная изоляция соответственно усиливается. На напряжение 500 кВ соединяются пять ДУ. Выключатели, используемые для расширения номинального напряжения путем последовательного их соединения, называются модулями. Перспективно также улучшение параметров каждого модуля. Так, совершенствование модуля ВВБ (повышение давления, доработка ДУ) позволило повысить номинальное напряжение со 110 до 220 кВ. При этом сокращается число разрывов выключателя в 2 раза, что дает большой технико-экономический эффект.
На базе модуля (одного полюса), изображенного на рис. 19, создана серия выключателей с номинальным напряжением до 750 кВ и номинальным током отключения до 40 кА. Их полное время отключения составляет 0,06—0,08 с в зависимости от номинального напряжения. Полюс выключателя на напряжение 220 кВ имеет четыре разрыва. По сравнению с серией ВВН габариты и масса выключателей серии ВВБ уменьшены на 20—30 %, а расход воздуха сокращен в 3 раза. Эксплуатация показала их высокую надежность.
Развитием этой серии выключателей является выключатель ВВБК, в котором давление воздуха поднято до 4 МПа. В результате конструктивных усовершенствований при отключении создается двустороннее несимметричное дутье, повышающее эффективность гашения дуги [5]. Для уменьшения времени отключения в выключателях на напряжение 220 кВ и выше пневматическая система управления заменена механической. Номинальный ток отключения увеличен с 31,5 до 50 кА, а допустимое напряжение на разрыве с 55 до 110кВ. Время отключения при этом снижено с 0,06—0,08 до 0,04 с. Номинальное напряжение выключателя ВВБК достигает 1150 кВ.
г) Серия воздушных выключателей ВНВ. Предназначена для напряжений 220— 1150 кВ и тока отключения до 63 кА. Модуль на напряжение 250 кВ представлен на рис. 20, а. Основной особенностью модуля является расположение ДУ в атмосфере сжатого воздуха при давлении 4 МПа. При отключении контакты ДУ расходятся и открывается выхлопной клапан, соединяющий внутреннюю полость ДУ с атмосферой. После гашения дуги контакты остаются в разведенном состоянии, а выхлопной клапан закрывается, ДУ герметизируется. Привод контактов осуществляется с помощью легкой стеклопластиковой тяги. Расположение трех полюсов выключателя показано на рис. 20,6. На рис. 20: 1— бак со сжатым воздухом; 2—опорный изолятор; 3 — основной разрыв; 4— конденсатор для выравнивания напряжения по разрывам; 5 — шунтирующий резистор с ДУ. Электрическая схема модуля аналогична схеме рис. 19,6. Выключатель на 500 кВ имеет два модуля, включенных последовательно, и три модуля при напряжении 750 кВ. Опорные изоляторы усиливаются соответственно классу напряжения.
В основании модуля выключателя на 500 кВ расположен бак 1 со сжатым воздухом (рис. 21). Сжатый воздух по трубопроводу подается в верхний бак, образованный металлическим цилиндром 9 и стеклоэпоксидным цилиндром 11 и содержащий ДУ. Главный контакт создается пальцами 19 неподвижного контакта и внешней поверхностью подвижного цилиндрического контакта Пальцы дугогасительного контакта 20 расположены в прорезях дутьевого сопла неподвижного контакта и скользят по внутренней поверхности контакта В показанном на рисунке включенном положении контакт 18 прижат к седлу 25. Внутренняя полость контакта 18 соединяется с атмосферой через открытый выхлопной клапан 24, а его внешняя поверхность и пальцы 19 находятся в среде сжатого воздуха. Сопло 17 подвижное. Начальное расстояние между контактом 20 и соплом 17 — оптимальное для данного сечения сопла. После гашения дуги подвижное сопло 17 перемещается под действием давления внутри ДУ вправо, садится на седло 26 и герметизирует камеру. Для уменьшения напряженности электрического поля между контактами в разведенном состоянии они окружены экранами 16. Это позволяет поднять электрическую прочность промежутка и номинальное напряжение модуля.
При отключении срабатывает отключающий электромагнит 3, открывающий клапан 6. После этого сжатый воздух подается на поршень 7, воздействующий на тягу 8. Через звенья 5, 4, 2 усилие передается на изоляционные тяги 13, которые перемещаются вниз. Звенья 15 и 37 соединяются с тягой 13 трубкой 14 и перемещают горизонтальную тягу 36, которая связана с подвижным контактом
Рис 20 Воздушный выключатель серии ВНВ
Рис 21. Пневмомеханическая схема полюса выключателя ВНВ-500 (А — к коммутирующему устройству шунтирующего резистора)
Контакт 18 сначала размыкается с пальцами 19, а затем с пальцами 20. Между последними и внутренней поверхностью контакта 18 загорается дуга, которая быстро перемещается воздушным потоком, вытекающим в атмосферу через дутьевое сопло неподвижного контакта и подвижное сопло 17. Гашение дуги происходит за счет двустороннего дутья. Шток 31 связан с тягой 13. При движении тяги 13 вниз связанный с ней шток 31 действует на рычаг 30 и открывает клапан 34. При этом сжатый воздух, находящийся над поршнем 35, через змеевик 29 выходит в атмосферу. Поршень 35 освобождает рычаги 27 и 28 и с помощью тяг 22, 23 и коромысла 21 закрывает клапан 24. Одновременно подвижное сопло 17 вместе с ограничивающим электродом 41 перемещается вправо, пока не сядет на седло 26. Таким образом, внутренний объем ДУ герметизируется и отделяется от атмосферы. Электрод 41 ограничивает длину дуги, горящей между ним и неподвижным дутогасительным контактом 20, что уменьшает энергию, выделяемую дугой.
При токах отключения до 40 кА выключатель не имеет шунтирующих резисторов. При токах 63 кА или тяжелых условиях восстановления напряжения используются низкоомный шунтирующий резистор и вспомогательный контактный блок для отключения резистора (рис. 20, поз. 5). Контейнер с этим блоком и резистором располагается рядом с ДУ. Управление вспомогательным блоком осуществляется от клапана 34 (стрелка А).
При включении срабатывает электромагнит 12. Клапан 10 открывается и соединяет полость над поршнем 7 с атмосферой. Одновременно подается сжатый воздух на поршень 38, который отделяет полость бака от поршня 7. Под действием заранее заведенной пружины 33 шток 32 опускается и клапан 34 закрывается. Сжатый воздух подается к поршню 35, и он опускается, воздействуя на рычаги 28, 27. Клапан 24 открывается, а подвижное сопло 17 устанавливается в положение, указанное на рисунке. При этом внутренняя полость контакта 18 и сопла 17 соединяется с атмосферой. При закрытии клапана 34 сжатый воздух подается в контейнер со вспомогательным контактным блоком, который включает резистор. При движении тяги 13 вверх подвижный контакт 18 замыкается с неподвижным, одновременно поршень 7 переходит в положение, указанное на рисунке. После выхода воздуха из полости над поршнем 7 закрываются клапаны 10, 6 и поршень 38 устанавливается в исходное положение соответствующими пружинами.
В выключателе на напряжение 1150 кВ при включении вначале замыкаются вспомогательные контакты и в цепь вводится резистор, сопротивление которого равно волновому сопротивлению коммутируемой линии. Затем примерно через 10 мс включается контакт 18, который шунтирует этот резистор. Это ограничивает перенапряжения при включении холостых линий электропередачи.
Выключатель имеет следующие конструктивные особенности:
1. ДУ расположены внутри прочных стеклоэпоксидных труб, являющихся баком сжатого воздуха выключателя. Такая конструкция позволяет сиять с фарфора воздействие высокого давления воздуха. Фарфоровая рубашка защищает стеклоэпоксидную трубу от воздействия атмосферы.
2. Давление сжатого воздуха в ДУ достигает 4 МПа, что наряду с другими мероприятиями обеспечивает ток отключения до 63 кА при напряжении на разрыве 125 кВ.
3. ДУ имеет два разрыва. После гашения дуги дугогаентельный контакт отходит на расстояние, обеспечивающее необходимую электрическую прочность промежутка, и в своем крайнем положении воздействует на выхлопной клапан ДУ. Камера ДУ герметизируется, и разведенные контакты находятся при давлении 4 МПа.
4. Привод контактов расположен на заземленном баке выключателя. Передача силы от привода к механизму контактов осуществляется механически через легкую изоляционную стеклопластиковую тягу. Это позволяет получать полное время отключения 0,04 с.
5. При тяжелых условиях восстановления напряжения параллельно каждому разрыву включается низкоомный шунтирующий резистор (40 Ом). Из конструктивных соображений резистор разбит на две части (два контейнера). Ток резистора отключается двухступенчатой контактной системой, расположенной в одном из контейнеров.
Элегазовые выключатели - Выключатели высокого напряжения
ЭЛЕГАЗОВЫЕ ВЫКЛЮЧАТЕЛИ
Свойства элегаза
Дальнейшее повышение номинального напряжения и номинального тока в воздушных выключателях наталкивается на большие трудности (давление воздуха в ДУ достигает 4 МПа, что требует больших затрат на создание механически прочной и работоспособной конструкции выключателя). Решение задачи может быть получено путем использования вместо воздуха газа, который обладал бы более высокой электрической прочностью и отключающей способностью. Таким газом является шестифтористая сера SF6 — элегаз (электротехнический газ) [6]. По сравнению с воздухом этот газ обладает следующими преимуществами:
1. Электрическая прочность в 2,5 раза выше, чем у воздуха. При давлении 0,2 МПа электрическая прочность элегаза приближается к прочности трансформаторного масла.
2. Высокая удельная объемная теплоемкость (почти в 4 раза выше, чем у воздуха) позволяет увеличить нагрузку токоведущих частей и уменьшить массу меди в выключателе.
3. Номинальный ток отключения камеры продольного дутья с элегазом в 5 раз выше, чем с воздухом.
4. Малая напряженность электрического поля в столбе дуги. Благодаря этому резко сокращается износ контактов, уменьшается эффект термодинамической закупорки сопла. Это позволяет увеличить расстояние между контактами, повысить напряжение на каждом контактном промежутке и допустимую скорость восстановления напряжения.
За рубежом опубликованы данные по одноразрывному выключателю на номинальное напряжение 750 кВ.
5. Элегаз является инертным газом, не вступающим в реакцию с кислородом и водородом, слабо разлагается дугой. Элегаз нетоксичен, хотя некоторые продукты разложения опасны.
Недостатком элегаза является высокая температура сжижения. Так, например, при давлении 1,31 МПа переход элегаза из газообразного состояния в жидкое происходит при температуре 0°С. Это заставляет использовать его либо с подогревающим устройством, либо при низком давлении. При давлении 0,35 МПа температура сжижения равна — 40°С. Для электрических аппаратов применяется газ с высокой степенью очистки от примесей, что усложняет и удорожает его получение.
Конструкция элегазовых выключателей
Дугогасящая способность элегаза наиболее эффективна при большой скорости его струи относительно горящей дуги. Возможны следующие исполнения ДУ с элегазом:
1) с автопневматическим дутьем. Необходимый для дутья перепад давления создается за счет энергии привода;
2) с охлаждением дуги элегазом при ее движении, вызванном взаимодействием тока с магнитным полем.
3) с гашением дуги за счет перетекания газа из резервуара с высоким давлением в резервуар с низким давлением (выключатели с двойным давлением).
В настоящее время широко применяется первый способ. Дугогасительное устройство с автопневматическим принудительным дутьем показано на рис. 22. Оно располагается в герметичном баке с давлением элегаза 0,2— 0,28 МПа. При этом удается получить необходимую электрическую прочность внутренней изоляции. При отключении дуга возникает между неподвижным 1 и подвижным 2 контактами. Вместе с подвижным контактом 2 при отключении перемещаются сопло 3 из фторопласта, перегородка 5 и цилиндр 6. Так как поршень 4 при этом неподвижен, элегаз сжимается и его поток, проходя через сопло, продольно омывает дугу и обеспечивает ее эффективное гашение.
Рис. 22. Схема дугогасительного устройства элегазового выключателя с автопневматическим дутьем
Рис. 23. Дугогасительная камера элегазового выключателя
Для КРУ разработан элегазовый выключатель с номинальным напряжением 110 и 220 кВ, номинальным током 2 кА и номинальным током отключения 40 кА. Время отключения 0,065, время включения 0,08 с, номинальное давление элегаза 0,55 МПа, привод пневматический с давлением воздуха 2 МПа.
Камера ДУ элегазового выключателя на 220 кВ с двумя разрывами на полюс показана на рис. 23. При включении выключателя цилиндр 1 вместе со связанными с ним главным 2 и дугогасительным 3 контактами перемещается вправо. При этом труба 2 входит в розетку 5, а розетка 3 соединяется с контактом 4. Сопло из фторопласта 6 также перемещается вправо и надвигается на полый трубчатый контакт 4. В полость А засасывается элегаз, а из полости Б элегаз вытесняется.
При отключении цилиндр 1 и труба 7 перемещаются влево. Сначала расходятся главные контакты (2, 5), потом дугогасительные (3, 4). В момент размыкания контактов 3 и 4 возникает дуга, которая подвергается обдуву газом. Поршень 10 остается неподвижным. В области А образуется сжатый газ, а в области Б— разреженный. В результате газ перетекает из области А через полый контакт 7 в область Б через отверстия 8 и 9 под действием разности давлений рл—(—Рб). Большой перепад давлений позволяет получить необходимую (критическую) скорость обдува дуги. При тяжелых условиях отключения (неудаленное КЗ) дуга гасится также за счет ее охлаждения в сопле 6 после выхода его с контакта 4.
Рис. 24. Устройство элегазового выключателя на напряжение 220 кВ
На рис. 24 представлено принципиальное устройство элегазового выключателя для КРУЭ-220 на напряжение 220 кВ. Неподвижный контакт выключателя 1 прикреплен к баку выключателя на литом изоляторе 2. Выключатель имеет два ДУ 3 и 4, соединенных последовательно через корпус 11. Равномерное распределение напряжения по ДУ обеспечивается керамическими конденсаторами 6. Для устранения коронирования ДУ закрыты экранами 5. Цилиндры 3 и 4 приводятся в движение изоляционной штангой 8 Через рычажный механизм 7. Включение и отключение выключателя производится пневматическим приводом. Выключатель заполнен элегазом при давлении 0,55 МПа. Неподвижные контакты выключателя 1 выведены из бака через проходной герметизированный изолятор 9 и 10 элегаз— элегаз, что означает переход из полости выключателя, наполненной элегазом, в полость комплектного распределительного устройства, также заполненную элегазом ПРУЭ). Здесь 9 — изоляционная перегородка, 10—разъемный контакт розеточного типа. Такой изолятор позволяет сохранить в выключателе элегаз при отсоединении его от КРУЭ.
Описанный элегазовый выключатель имеет высокие технические показатели и допускает 20-кратное отключение тока КЗ предельного значения 40 кА без ревизий. Утечка элегаза из бака не превышает 1 % в год. Срок службы выключателя до капитального ремонта составляет 10 лет. Разработаны ДУ с номинальным напряжением 220 кВ на один разрыв и током отключения 40 кА при высокой скорости восстановления напряжения. Опытные образцы элегазовых выключателей допускают ток отключения до 100 кА при напряжении на разрыве 245 кВ и ток 40 к А при напряжении на разрыве до 362 кВ. Элегазовые выключатели наиболее перспективны для напряжений выше 35 кВ и могут быть созданы на напряжение 800 кВ и выше.
Электромагнитные выключатели - Выключатели высокого напряжения
ВАКУУМНЫЕ ВЫКЛЮЧАТЕЛИ
В вакуумных выключателях контакты расходятся в среде с давлением 10~4 Па. При таком вакууме дугогасительный промежуток имеет очень высокую электрическую прочность — примерно 100 кВ/мм. Малая плотность воздуха создает возможность гашения дуги без ДУ за время 0,01— 0,02 с. Все это дает возможность создать выключатели с малым износом контактов, работающие при минимальном техническом обслуживании в течение нескольких десятков лет. Это определяет перспективность развития и широкого применения вакуумных выключателей. Процесс гашения дуги в вакууме рассмотрен ранее. Здесь добавим, что образующиеся под действием высокой температуры ионы движутся к электродам, создавая вблизи них соответствующие объемные заряды. Поток электронов направляется к аноду и производит его бомбардировку. Освобождающиеся из анода положительные ионы движутся к катоду и разрушают его. Эти процессы определяют срок службы контактов.
Следует отметить, что высокие значения напряженности электрического поля (при малых расстояниях между контактами) являются также причиной возникновения дуги в вакууме благодаря автоэлектронной эмиссии.
Малая плотность среды обусловливает очень высокую скорость диффузии зарядов из-за большой разницы плотностей частиц в разряде и вакууме. Быстрая диффузия частиц, высокая электрическая прочность вакуума позволяют эффективно гасить дугу в вакуумном выключателе.
Для работы вакуумного выключателя имеет большое значение дегазация контактов, так как адсорбированные ими газы при разогреве выделяются и ухудшают вакуум. С целью удаления газовых включений из контактов их нагревают в течение нескольких часов до красного каления.
При работе выключателя распыленные материалы контактов осаждаются на поверхности изоляционного цилиндра, что создает возможность перекрытия изоляции. Для защиты цилиндра от паров металла электроды защищаются специальными металлическими экранами 8, 9 (рис. 27). При отсутствии экранов электрон, разгоняясь в электрическом поле по длинному пути, приобретает высокую энергию и при столкновении с молекулой может вызывать ее ионизацию. Благодаря экранам 8 и 9 электрическое поле разбито на два небольших участка (между электродами 9 и 8 и между электродами 8 и 9). Возможность перекрытия внутри камеры резко снижается.
При переменном токе после прохождения тока через нуль происходит быстрое рассасывание зарядов вследствие диффузии, и через 10 мкс между контактами восстанавливается электрическая прочность вакуума. Быстрое нарастание электрической прочности промежутка после прохождения тока через нуль является большим достоинством вакуумных выключателей.
Для вакуумной дуги характерен обрыв (срез) тока при подходе к нулевому значению. При уменьшении тока падает давление паров металла, дуга становится неустойчивой и гаснет. Резкие уменьшения тока могут вызывать перенапряжения, опасные для отключаемого оборудования. Ток среза зависит как от параметров отключаемой цепи, так и от свойств материала контактов. Вольфрам обладает устойчивостью к свариванию, высокой температурой плавления и износостойкостью. Однако при вольфрамовых контактах значения тока среза и перенапряжений очень высоки, так как пары вольфрама создают низкое давление. Перенапряжения при медных контактах в 2,5 раза ниже, но они более подвержены свариванию и износу. Эти противоречия устраняются, если часть контактной поверхности выполнена из дугостойкого металла (молибден), а другая часть — из материала с высоким давлением паров (сурьма). Хорошие результаты дает специальная металлокерамика. Наличие вакуума ухудшает охлаждение контактов. Однако за счет увеличения размеров подводящих шин, совершенствования конструкции ДУ и контактных материалов удается довести длительные токи до необходимых значений.
В вакуумной дугогасительной камере (рис. 27) контактный