Соотношение классической, релятивистской и квантовой картин
Классическая механика обнаружила пределы своих возможностей в объяснении атомных и молекулярных спектров, поведения теплоемкости твердых тел, движения тел со скоростями, соизмеримыми со скоростью света, и других явлений. Для их описания были созданы новые системы определений, понятий, аксиом, постулатов, которые легли в основу квантовой и релятивистской механик - новых моделей описания природы. К классическим концептуальным системам физики присоединились неклассические. Но это не простое объединение, оно связано с ломкой старых и возникновением новых представлений о пространстве, времени и причинности. Оно изменило образ физической мысли. В результате этого объединения произошла смена парадигмы физической науки.
Но это не значит, что законы классической механики оказались несправедливы. Вот что по этому поводу пишет В.Гейзенберг в своей классической работе «Физика и философия»: «Всюду, где понятия механики Ньютона могут быть применены для описания процессов природы, законы, сформулированные Ньютоном, также являются справедливыми и не могут быть улучшены. Электромагнитные же явления не могут быть должным образом описаны с помощью системы понятий ньютоновской механики. Поэтому эксперименты над электромагнитными полями и световыми волнами совместно с их теоретическим анализом, проведенным Максвеллом, Лоренцом и Эйнштейном, привели к новой замкнутой системе определений, аксиом и понятий, к системе, являющейся также непротиворечивой и замкнутой, что и система ньютоновской механики, хотя она существенно отлична от системы Ньютона».
Это значит, что не только классическая механика, но и вся классическая наука имеет границы применимости, в рамках которых она была и остается полностью справедливой. На основе классической механики работают все машины и механизмы, строятся здания и сооружения. Классическая термодинамика лежит в основе работы тепловых двигателей, классическая электродинамика - в основе работы электрических установок. И совсем ни к чему при исследовании явлений макромира (например, движения автомобиля по дороге или работы электродвигателя) использовать представления релятивистской или квантовой физики. В условиях макромира эти эффекты будут настолько малы, что у нас не найдется приборов, чтобы их измерить, и более того, такие малые эффекты не повлияют на характер движения макротел.
Классическая механика является частным случаем других более сложных моделей и при определенных условиях соотношения релятивистской или квантовой механики переходят в соотношения классические, то есть новые теории, претендующие на более широкую область применимости, чем старая, включают последнюю в качестве предельного случая, т.е выполняется принцип соответствия.
Однако и неклассическая наука не может ответить на множество вопросов, связанных с пределами познаваемости мира, единства разных типов взаимодействий, пределом делимости материи и многих других. По сравнению с классической наукой она расширила пределы познания, перевела его на новый, более сложный уровень, но, как и классическая наука, она оказалась ограниченной и бессильной в создании подлинно единой научной картины мира. К середине ХХ столетия оформились отдельные ее части, взаимосвязь между которыми просматривалась лишь на уровне общефилософских идей о развитии. Мощный всплеск интегративных тенденций в науке, ускорение процессов междисциплинарного синтеза в поисках механизмов взаимосвязи природы, человека и общества и общих закономерностей их развития стали подножием для становления постнеклассической науки, сформировавшей новые познавательные модели, в рамках которых стало возможным описать мир как единую развивающуюся суперсистему.
Постнеклассическая наука
В первой трети ХХ столетия механистическое мировоззрение, исходящее из представлений о линейности, определенности и однозначности причинно-следственных связей, редукции любого сложного объекта к сумме более простых исходных элементов и выведения из них различных комбинаций всех свойств объекта, потерпело окончательное поражение. Это обнаружилось не только в описании биологических и социальных явлений, но и в фундаменте естествознания - физике. Основанная на античных традициях поиска первокирпичиков Мироздания, она изучала, главным образом, структуру и свойства объекта, наиболее существенные взаимосвязи между его отдельными элементами. Однако объекты природы нельзя представить в виде простой суммы отдельных элементов, они гораздо сложнее. К описанию их поведения не всегда применимы классические модели и представления, ибо мир является неделимым целым, сетью отношений, сетью взаимосвязанных и взаимообусловленных процессов, которые затрудняется познать и адекватно описать не только классическая, но и неклассическая наука. Более того, была выявлена масса противоречий, которые с их точки зрения кажутся неразрешимыми. Так, используя модель закрытой системы, II начало термодинамики и представления об энтропии, классическая наука может объяснить лишь, как из порядка возникает хаос, чем обусловлены взрывы звезд, разрушение планет, старение и смерть организмов, распад цивилизаций. Эта направленность процессов связывается с ростом энтропии в изолированных системах и стремлением ее к некоторому максимуму, при котором система переходит в состояние хаоса. Но в окружающем мире наряду с процессами деградации идут и процессы созидания порядка из хаоса, процессы связанные с самопроизвольным уменьшением энтропии. Как получается, что система самопроизвольно переходит из состояния хаоса, наиболее вероятного и выгодного с энергетической точки зрения, в состояние порядка, менее вероятного и менее выгодного (с более высокой энергией)? Как и за счет чего происходит ее самоорганизация (самоупорядочение)? Разработанные классической и неклассической наукой познавательные модели не могли ответить на эти вопросы. В очередной раз естественные науки оказалась в тупике, и были поставлены перед необходимостью перехода к новым качественным представлениям об окружающем мире. Другая важнейшая причина поиска нового подхода к его изучению лежит в области современной техники - проблем разработки средств получения, хранения и передачи информации, создания различных систем управления, регулирования, планирования, их компьютерного обеспечения и т.д.
Отказ от механистической методологии и практические нужды общества потребовали поиска новых концепций и идей, учитывающих принципиальную сложность исследуемых объектов и ориентированных на познание их целостности и системных качеств. В числе первых научных дисциплин, поставивших эту проблему стали экономика, биология, психология и лингвистика. Но подходы к ее решению были найдены при исследовании поведения физических и химических систем. В процессе разрешения этой проблемы и сформировалась постнеклассическая наука. Она акцентирует внимание на исследовании всей совокупности иерархий систем Мироздания как взаимосвязанной целостности или сети взаимодействующих элементов. Объект ее исследования - процессразвития, общие принципы самоорганизации и эволюции сложных систем разного уровня и разной природы, особенности смены их качественных состояний, механизмы, динамика и пространственно-временная развертка этого процесса.
Однако на пути понимания и описания сложного наука столкнулась с существенными трудностями, которые заключались в отсутствии понятийного аппарата, необходимых средств и методов исследования, неразработанностью лежащих в их основе исходных философских и логико-методологических положений. И, несмотря на грандиозные успехи в этом направлении эти трудности во многом остаются до сих пор неразрешенными.
К числу важнейших постнеклассических концепций, которые находят свое приложение практически во всех областях знания и деятельности, следует отнести теорию систем, теорию информации, теорию самоорганизации и теорию управления. Эти концепции имеют выдающееся значение для современной теории познания, составляют методологическую основу интеграции разнопредметных знаний в описании единства мира и способов его постижения, являются базой для понимания общности механизмов развития природных, социальных и технологических систем, оказываются крайне важными для осознания необходимости коэволюции природы, общества и культуры в обеспечении устойчивого развития человечества.
Новые понятия и термины:релятивизм, постулат, интервал, квант, стационарное состояние, правила отбора, квантовое число, спин, волновая функция, плотность вероятности, оператор, соотношения неопределенности.
Ведущие идеи:
- зависимость свойств объектов (масса, размеры) и времени протекания процессов от скорости движения системы отсчета, в которой находится объект или протекает процесс;
- взаимосвязь тяготения и геометрии пространства;
- эквивалентность массы и энергии;
- принцип дополнительности как важнейший методологический принцип познания;
- вероятностность поведения характерна не только для коллектива частиц, но и для одной, отдельно взятой элементарной частицы;
- все законы микромира носят статистический характер;
- случайность и неопределенность есть фундаментальное свойство природы,
- в исследовании структуры вещества наступил предел экспериментальных возможностей науки в обнаружении еще более элементарных частиц;
- рождение постнеклассической науки.