Закон Ома для однородного участка цепи
Закон, устанавливающий связь между силой тока в проводнике и разностью потенциалов (напряжением) на его концах, был открыт Г. Омом опытным путем в 1826 году.
Закон Ома формулируется следующим образом.
Сила тока, текущего по однородному участку цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника,
Эту формулу еще называют законом Ома в интегральной форме. Напомним, что в случае однородного участка цепи напряжение равно разности потенциалов
Сопротивление проводника зависит от материала и его геометрических размеров, т. е.
где l - длина проводника, S - площадь его поперечного сечения, ρ - удельное сопротивление проводника, которое зависит от рода вещества, а также от его состояния (в первую очередь, температуры). Например, при температуре 20oС удельное сопротивление меди , а у фарфора .
Единицей сопротивления служит ом (Ом), .
Закон Ома справедлив для широкого класса материалов: металлов, угля, электролитов. Его широко применяют для расчета различных электрических цепей. Его используют во многих других случаях, например, в технике безопасности. Так, допустимое напряжение определяют, исходя из сопротивления тела человека и допустимого для него значения тока. Смертельным считается ток 100 мА. Наиболее опасный путь его прохождения: правая рука - ноги. Сопротивление тела при влажной коже , при сухой . Рассчитайте самостоятельно допустимое напряжение.
Закон Ома в дифференциальной форме
Закон Ома в дифференциальной форме справедлив для любой точки участка цепи как с постоянным, так и с переменным сечением.
Для однородного участка цепи плотность тока равна
; отсюда: .
Подставим эту формулу, а также формулу для сопротивления (2.26) в закон Ома (2.24)
.
Учтем, что для однородного поля справедлива формула (2.19)
Тогда
Величина, обратная удельному сопротивлению, называется удельной проводимостью, т. е.
В векторной форме формулу (2.27) можно записать следующим образом
Формула (2.28) выражает закон Ома в дифференциальной форме. Плотность тока пропорциональна напряженности электрического поля и имеет одинаковое с ней направление (рис. 2.8).
Рис.2.8
В такой форме закон Ома выражает связь между величинами, относящимися к данной точке, и поэтому применим к неоднородным проводникам.
Объяснение закона Ома
Задача физики - выяснить природу явлений, описываемых физическими законами.
Для объяснения закона Ома (2.28) в начале XIX в. была разработана классическая теория электропроводности металлов. Согласно классическим представлениям, электроны проводимости в металлах образуют так называемый электронный газ. Подобно молекулам идеального газа электроны в металле участвуют в хаотическом движении. При приложении электрического поля на хаотическое движение электронов накладывается упорядоченное движение. Среда оказывает сопротивление движению зарядов в определенном направлении. Поэтому в однородном веществе при постоянной напряженности поля заряды движутся с постоянной скоростью , пропорциональной напряженности поля
где μ - подвижность носителей, которая зависит от природы носителей, плотности и состояния вещества.
Подставим формулу (2.29) в (2.23) и получим закон Ома в дифференциальной форме
Основанная на этих представлениях классическая теория электропроводности помогла понять и объяснить ряд физических явлений. Но следует отметить, что некоторые экспериментальные факты (например, сверхпроводимость металлов, зависимость сопротивления от температуры, значение их теплоемкости и др.) можно объяснить только с помощью квантовой теории. Однако, классическая теория электропроводности не утратила своего значения и в наши дни, так как во многих случаях (например, при малой концентрации электронов проводимости и высокой температуре, как это имеет место для полупроводников) она дает правильные результаты.