Основополагающие принципы и понятия физического естествознания

В качестве итога изложения концептуальных принципов и понятий физического естествознания, содержащихся в главах 3, 4 и в предыдущих пунктах, можно констатировать существование следующих фундаментальных принципов, представленных ниже с их кратким разъяснением.

1. Принцип относительности — закон, состоящий в том, что любой процесс протекает одинаково в изолированных инерциальных материальных системах, системах, покоящихся либо равномерно прямолинейно движущихся относительно друг друга. Принцип относительности утверждает равноправие всех инерциальных систем отсчета. Особо следует выделять принцип относительности к средствам наблюдения, устанавливающего связь макро- и микромиров.

2. Принцип распространения света — скорость распространения света в вакууме (пустоте) не зависит от скорости источника и является предельной для любых физических скоростей.

3. Принцип суперпозиции в классической физике — утверждение, состоящее в том, что результирующий эффект от независимых воздействий представляет собой линейную сумму эффектов от каждого воздействия в отдельности.

Принцип суперпозиции состояний в квантовой физике — утверждение, состоящее в том, физическая система может находиться как в состояниях, описываемых двумя (или несколькими) волновыми функциями, так и в состояниях, описываемых любой линейной комбинацией этих функций. Принцип суперпозиции можно понимать как принцип линейных независимых наложений воздействий или состояний друг на друга.

4. Принцип корпускулярно-волнового дуализма (принцип волновых свойств материи) — утверждение, заключающееся в том, что любые микрообъекты материи (фотоны, электроны, протоны, атомы, молекулы и др.) обладают свойствами и частиц (корпускул) и волн, количественные связи энергии, массы, импульса и частоты которых определяются соотношениями де Бройля.

5. Принцип неопределенности Гейзенберга — принцип квантовой физики, утверждающий, что характеризующие физическую систему так называемые дополнительные физические величины (координата и импульс, энергия и время и др.) не могут одновременно принимать точные значения и не могут быть потому одновременно точно измерены. Количественная связь неопределенностей (погрешностей) в определении дополнительных величин ограничивается их произведением, равным или превосходящим постоянную Планка.

6. Принцип тождественности частиц (микромира) — положение квантовой физики, согласно которому состояния системы частиц (микрообъектов), получающиеся друг из друга перестановкой местами тождественных (неотличимых) частиц, нельзя различить ни в каком эксперименте, и такие состояния должны приниматься как одно физическое состояние. Из указанного принципа следует симметрия волновой функции системы тождественных частиц.

7. Принцип запрета Паули — закон природы, согласно которому в какой-либо квантовой системе тождественных частиц с полуцелым спином (например, электроны, протоны и др.) две или более частицы не могут одновременно находиться в одном и том же состоянии (именно это запрещено — быть в одинаковом состоянии).

8. Принцип эквивалентности (гравитационной и инертной масс) — закон природы, который устанавливает аналогию между свободным движением тел, наблюдаемым в неинерциальной (ускоренной) системе отсчета, и движением тел в поле тяготения. Принцип утверждает эквивалентность ускоренных систем отсчета некоторому гравитационному полю.

9. Принцип дополнительности Бора — принцип, со гласно которому существуют две взаимоисключающие и дополняющие друг друга импульсно-энергетическая и про

странственно-временная картины состояний микрообъекта, получаемые при взаимодействии его с соответствующими измерительными приборами. Одновременные точные данные о них невозможны.

10. Принцип соответствия Бора — утверждение, состоящее в том, что новая, более глубокая и общая теория, своими следствиями и выводами должна включать в себя старую теорию как предельный случай (например, релятивистская механика Эйнштейна при малых скоростях — классическую механику Ньютона и др.).

11. Принцип калибровочной инвариантности (компенсации) в теории полей — преобразование, задающее переход от одних значений, характеризующих поле величин, к другим, оставляющим без изменения физически определенные, наблюдаемые (измеряемые) на опыте параметры поля. Например, в электродинамике — переход от одних значений электрических потенциалов к другим, оставляющий без изменения значения напряженностей электрического и магнитного полей, плотность их энергии и т. д. Компенсация за такое преобразование сводится к появлению агента, переносящего то или иное свойство микрообъекта в пространстве и времени — например, агента взаимодействия электрических зарядов посредством (или в виде) электромагнитного поля или фотонов. Данный принцип является всеобщим (всеобъемлющим) принципом природы.

Нижеследующие принципы:

12. Принцип спонтанного нарушения симметрии и

13. Принцип перенормируемости являются характерными для мира элементарных частиц и связаны с методами их классификации на унитарной основе и исключения бесконечных величин, возникающих в квантово-полевых теориях.

Термодинамические принципы:

14. Первый принцип (первое начало) термодинамики,

15. Второй принцип (второе начало) термодинамики,

16. Третий принцип (третье начало) термодинамики,

17. Принцип минимума производства энтропии в достаточной полноте истолкованы нами в заключительной части данного пункта, тогда как основанный на них

18. Принцип необратимости (движения и времени) в естествознании еще только начинает формироваться и не имеет общепринятого толкования и осмысления.

Представленные выше фундаментальные принципы позволяют сформулировать основные выводы о физической природе материального мира частиц, полей и их систем. Ниже, в виде обобщающих положений, они приведены с указанием имен ученых, внесших определяющий вклад в их творение и осмысление.

Физика частиц и полей

1. Макромир состоит из дискретных и континуальных объектов — частиц и полей (волн) (Демокрит, Зенон Элей-ский, Дальтон, Фарадей, Максвелл).

2. Движение объектов относительно и сохраняется в отсутствие взаимодействий. Состояния покоя и равномерного прямолинейного движения неразличимы никакими физическими опытами (Галилей, Ньютон, Лоренц, Пуанкаре, Эйнштейн, Нетер).

3. Поля (свет, гравитация, в том числе) распространяются с постоянной предельной скоростью (Майкельсон, Морли, Эйнштейн), объединяя в единое многообразие пространство и время — в пространство-время (Минковский).

4. Корпускулярная (дискретная) и континуальная (полевая) форма материи в микромире дуально едина (де Бройль, Шредингер, Дирак), калибровочно-инвариантна (Лоренц, Янг, Миллс), имея проявлением неустранимую неопределенность их пространственно-временных и им-пульсно-энергетических состояний (Гейзенберг) и взаимопревращений друг в друга.

5. Разнообразные свойства всех микрообъектов кванто-ванно минимизированы — электрический заряд (Милликен), спин (Гаудсмит, Уленбек), магнитный момент (Бор), изос-пин (Гейзенберг), странность (Гелл-Манн), барионный заряд, аромат, цвет — и переносятся, передаются от одного к другому связывающими их агентами — фотонами, мезонами, векторными бозонами, глюонами (Планк, Эйнштейн, Тамм, Иваненко, Ферми, Юкава, Янг, Миллс, Гелл-Манн, Цвейг, Боголюбов, Матвеев, Фадеев, Салам, Вайнберг).

6. Искривленное пространство-время макро- и мегамиров (Клиффорд, Лобачевский, Риман) создано материей (Эйнштейн) и простирается (распространяется), расширяясь (Фридман, Хаббл), от предельно плоских (Евклид) локальных областей к предельно искривленным областям — черным дырам (Лаплас, Оппенгеймер, Снайдер, Пенроуз, Хокинг).

Физика термодинамических систем

1. а) внутренняя энергия систем в основном зависит от температуры и может совершать работу (Карно, Майер, Джоуль, Ленд, Гельмгольц) либо б) работа систем возможна за счет понижения температуры.

2. а) мера неупорядоченности (хаоса) системы, энтропия, остается неизменной только для обратимых процессов, возрастая при всех остальных (Клаузиус, Больцман) либо б) мера хаоса (энтропия) в системе нарастает в результате обмена с внешней средой, порождая необратимость движения и времени.

3. а) энтропия систем стремится к нулю при стремлении к нулю абсолютной температуры (Нернст) либо б) наивысший порядок в системе может быть достигнут при абсолютном нуле температуры.

4. Производство энтропии системой минимально в стационарном состоянии (Пригожин).

Наши рекомендации