Стационарная теплопроводность в телах классичес-кой формы (пластина, цилиндр, шар). Определение количест-ва передаваемой теплоты.
Плоская стенка
При установившемся или стационарном тепловом режиме температура тела во времени остается постоянной, т.е. . Если внутренние источники теплоты отсутствуют ( ), то уравнение Фурье имеет вид:
Рассмотрим изотропную стенку толщиной δ, высота и ширина которой являются величинами бесконечно большими относительно толщины δ, с постоянным коэффициентом теплопроводности λ. На наружных поверхностях стенки поддерживаются постоянными температуры tс1 и tс2.
При заданных условиях температура будет изменяться только в направлении, перпендикулярном плоскости стенки. Если ось Ох направить, как показано на рисунке, то температура в направлении осей Оуи Oz будет оставаться постоянной
Температура будет функцией только одной координаты х и уравнение теплопроводности для рассматриваемого случая запишется
Зададим граничные условия в рассматриваемой задаче:
при х = 0 t = tс1
при х = δ t = tс2
В результате решения поставленной задачи должно быть найдено распределение температуры в плоской стенке, т.е. t = f(x), и получена формула для определения количества теплоты, проходящего в единицу времени через стенку.
Закон распределения температур по толщине стенки найдется в результате двойного интегрирования уравнения Фурье.
Первое интегрирование
Второе интегрирование
Постоянные С1 и С2 определяются из граничных условий:
при х = 0 и t = tс1 С2 = tc1
при х = δ и t = tс2
В итоге, закон распределения температуры в рассматриваемой плоской стенке
Для определения количества теплоты, проходящего через единицу поверхности стенки в единицу времени в направлении оси Ох, воспользуемся законом Фурье
, а
Следовательно
Из уравнения следует, что количество теплоты, проходящее через единицу поверхности стенки в единицу времени, прямо пропорционально коэффициенту теплопроводности λ, разности температур на наружных поверхностях стенки (tс1 – tс2) и обратно пропорционально толщине стенки δ.
Отношение δ/λ, (м2·К)/Вт называется тепловым или термическим сопротивлением стенки.
Зная плотность теплового потока, легко вычислить общее количество теплоты , Дж, которое передаётся через поверхность стенки величиной F за промежуток времени τ.
Рассмотрим теплопроводность многослойной плоской стенки, состоящей из n однородных слоев. Примем, что контакт между слоями совершенный и температура на соприкасающихся поверхностях двух слоев одинакова.
При стационарном режиме тепловой поток, проходящий через любую изотермическую поверхность неоднородной стенки, один и тот же.
При заданных температурах на внешних поверхностях такой стенки, размерах слоев и соответствующих коэффициентах теплопроводности можно составить систему уравнений
Выразив температурные напоры в каждом слое и сложив правые и левые части полученных уравнений, будем иметь:
.
Отсюда
Величина , равна сумме термических сопротивлений всех n слоев, называется полным термическим сопротивлением теплопроводности многослойной стенки.
Цилиндрическая стенка
Рассмотрим стационарный процесс теплопроводности в цилиндрической стенке (трубе) с внутренним диаметром d1=2r1 и наружным диаметром d2=2r2.
На поверхностях стенки заданы постоянные температуры tс1 и tс2. В заданном интервале температур коэффициент теплопроводности материала стенки λ является постоянной величиной.
Необходимо найти распределение температур в цилиндрической стенке и тепловой поток через нее.
В рассматриваемом случае дифференциальное уравнение теплопроводности удобно записать в цилиндрической системе координат
При этом ось Oz совмещена с осью трубы.
При заданных условиях температура изменяется только в радиальном направлении и температурное поле будет одномерным. Поэтому
и
Уравнение Фурье примет вид:
Граничные условия:
при r = r1 t = tc1
при r = r2 t = tc2
Введём новую переменную , тогда
Подставляя в уравнение Фурье, получим:
,
Интегрируя, получаем:
-> -> -> .
После интегрирования
(*)
Подставляя граничные условия
Решение уравнений дает:
.
Подставив значения С1 и С2 в уравнение (*), получим:
или
Для нахождения количества теплоты, Вт, проходящего через цилиндрическую поверхность величиной F в единицу времени, можно воспользоваться законом Фурье
.
Учитывая, что F=2π·r·l и получаем , Вт.
Следовательно, количество теплоты, проходящее через цилиндрическую стенку в единицу времени, определяется заданными граничными условиями и не зависит от радиуса.
Тепловой поток Q может быть отнесен либо к единице длины трубы, либо к единице внутренней или внешней поверхности. При этом расчетные формулы для плотности теплового потока, Вт/м2, принимают вид
(тепловой поток через единицу внутренней поверхности);
(тепловой поток через единицу наружной поверхности);
(тепловой поток, проходящий через единицу длины трубы, Вт/м).
Основные понятия конвективного теплообмена.
Понятие конвективного теплообмена охватывает процесс теплообмена при движении жидкости или газа. При этом перенос теплоты осуществляется одновременно конвекцией и теплопроводностью.
Если в единицу времени через единицу контрольной поверхности нормально к ней проходит масса жидкости , кг/(м2·с), где – скорость, – плотность жидкости, то вместе с ней переносится теплота, Вт/м2:
Конвекция теплоты всегда сопровождается теплопроводностью, т.к. при движении жидкости или газа происходит соприкосновение отдельных частиц, имеющих различные температуры. В результате конвективный теплообмен описывают уравнением
При расчетах конвективного теплообмена между текущей жидкостью и твёрдой стенкой используют закон Ньютона – Рихмана:
Коэффициент теплоотдачи α зависит от большого количества факторов. В общем случае α является функцией
- формы и размеров тела,
- режима движения,
- скорости и температуры жидкости,
- физических параметров жидкости,
- других величин.
Чтобы привести жидкость в движение, к ней необходимо приложить силу. Силы, действующие на какой-либо элемент жидкости, можно разделить на массовые (или объемные) и поверхностные.
Массовыми называют силы, приложенные ко всем частицам жидкости и обусловленные внешними силовыми полями (например, гравитационным или электрическим).
Поверхностные силы возникают вследствие действия окружающей жидкости или твердых тел; они приложены к поверхности контрольного объема жидкости. Такими силами являются силы внешнего давления и силы трения.
Различают свободную и вынужденную конвекцию.
В первом случае жидкость с неоднородным распределением температуры, и, как следствие, с неоднородным распределением плотности, находится в поле земного тяготения. Поэтому в ней может возникнуть свободное гравитационное движение.
Вынужденное движение объема жидкости происходит под действием внешних поверхностных сил, приложенных на его границах, за счет предварительно сообщенной кинетической энергии (например, за счет работы насоса, вентилятора, ветра).
Вынужденное движение в общем случае может сопровождаться свободным движением. Относительное влияние последнего тем больше, чем больше разница температур отдельных частиц среды и чем меньше скорость вынужденного движения.