Путешествия во времени: игровая площадка для физиков

Пожалуй, можно сказать, что больше остальных отличился в математических джунглях черных дыр и машин времени космолог Стивен Хокинг. В отличие от других знатоков относительности, которые, как правило, еще в раннем возрасте проявляют себя в математической физике, Хокинг в юности не был выдающимся студентом. Было очевидно, что он чрезвычайно умен, но преподаватели часто замечали, что он не всегда сосредоточен на занятиях и не работает в полную силу. Поворотным для Хокинга стал 1962 г.; после окончания Оксфорда молодой физик впервые начал замечать у себя симптомы амиотрофического латерального склероза (ALS, или болезнь Лу Герига). Он был потрясен известием о том, что страдает неизлечимым нейродегенеративным заболеванием, которое лишит его всех двигательных функций и, скорее всего, быстро убьет. Можно представить себе, как расстроила молодого человека эта новость. Какой смысл получать степень доктора философии, если все равно скоро умрешь?

Но чуть позже, преодолев первый шок, Хокинг сосредоточился на работе — может быть, первый раз в жизни. Поняв, что времени у него немного, он предпринял яростную атаку на некоторые самые сложные проблемы общей теории относительности. В начале 1970-х гг. Хокинг опубликовал знаковую серию научных работ и в них показал, что сингулярности в теории Эйнштейна (точки, где гравитационное поле становится бесконечным, как, например, происходит в центре черной дыры или происходило в момент Большого взрыва) являются существенной частью релятивистской картины мира и не могут быть просто так сброшены со счетов (как полагал сам Эйнштейн). В 1974 г. Хокинг также доказал, что черные дыры, вообще говоря, не совсем черные; они потихоньку излучают то, что сейчас называют излучением Хокинга, потому что излучение способно просочиться даже через гравитационное поле черной дыры. Эта работа стала первой серьезной попыткой применить квантовую теорию к теории относительности, и это самая известная работа Хокинга.

Как и предсказывали врачи, ALS постепенно вызвал у Хокинга паралич рук, ног и даже голосовых связок, но все происходило гораздо медленнее, чем они думали первоначально. В результате он пережил уже многих нормальных людей, стал отцом троих детей (а теперь уже и дедом), в 1991 г. развелся со своей первой женой, через четыре года женился на жене человека, который сконструировал для него голосовой синтезатор, а в 2006 г. подал на развод и с этой женой. В 2007 г. Стивен снова попал на первые полосы газет — он стал пассажиром специального реактивного самолета и побывал в невесомости, исполнив таким образом давнюю мечту. Его следующая цель — побывать в космосе.

Сегодня Хокинг почти полностью парализован, передвигается в инвалидном кресле и общается с внешним миром посредством движения глаз. Но даже в таком бедственном состоянии он умудряется шутить, пишет научные работы, читает лекции и участвует в дискуссиях. Одними глазами он выдает больше научных результатов, чем целые команды ученых, вполне владеющих своими телами. (Его коллега по Кембриджскому университету сэр Мартин Рис, которого королева назначила Королевским астрономом, как-то признался мне, что болезнь не позволяет Хокингу заниматься скучными математическими расчетами, необходимыми в большой науке. Поэтому вместо этого он сосредоточивается на генерации новых свежих идей, а расчетами могут заниматься и его студенты.)

В 1990 г. Хокинг ознакомился с работами коллег, в которых предлагались всевозможные версии машины времени, и отнесся к ним очень критически. Интуиция подсказывала ему, что путешествия во времени невозможны, — иначе почему мы не встречаем у себя туристов из будущего? Если бы съездить куда-нибудь в прошлое было бы так же просто, как устроить воскресный пикник в парке, мы каждый день встречали бы на улицах гостей из будущего, а они приставали бы к нам с просьбами сфотографироваться с ними для семейного альбома.

И Хокинг бросил миру физики вызов. Он заявил: должен существовать закон, запрещающий путешествия во времени. Иначе говоря, он предложил «гипотезу о защите хронологии», которая исключила бы путешествия во времени на основании законов природы и «сохранила историю для историков».

Но произошло неожиданное. Как они ни старались, физики не могли отыскать закон, который прямо запрещал бы путешествия во времени. По всей видимости, они ни в чем не противоречат известным законам природы. Сам Хокинг, также не в состоянии выявить запрет, не так давно изменил свое мнение. Он снова попал в заголовки газет, заявив: «Если путешествия во времени и возможны, то они неосуществимы».

Да, если прежде путешествия во времени рассматривались в лучшем случае как околонаучная тема, то теперь они внезапно превратились в любимую игрушку физиков-теоретиков. Физик Кип Торн из Калифорнийского технологического института пишет: «Когда-то путешествия во времени были исключительной прерогативой писателей-фантастов. Серьезные ученые избегали их как чумы — даже когда писали под псевдонимом романы или тайком читали их. Как изменились времена! Теперь в серьезных научных журналах можно обнаружить ученый анализ путешествий во времени, принадлежащий перу выдающихся физиков-теоретиков... Откуда такая перемена? Просто мы, физики, поняли, что природа времени — слишком важная тема, чтобы отдавать ее на откуп писателям-фантастам».

Причина всей этой суеты и путаницы в том, что уравнения Эйнштейна допускают существование множества разных типов машины времени. (Правда, пока неясно, устоят ли они перед проверкой при помощи квантовой теории.) Более того, в теории Эйнштейна мы часто встречаем нечто под названием «замкнутая времяподобная кривая»; это технический термин для путей, которые позволяют путешествия в прошлое. Если следовать вдоль замкнутой времяподобной кривой, то можно вернуться из путешествия раньше, чем мы в него отправились.

Первый тип машины времени предусматривает использование кротовых нор. Уравнения Эйнштейна имеют немало решений, соединяющих две удаленные точки пространства. Но поскольку время и пространство в теории Эйнштейна тесно переплетены, эта же кротовая нора может и соединять две точки во времени. Упав в кротовую нору, можно переместиться (по крайней мере, математически) в прошлое. Вроде бы после этого можно вновь переместиться в первоначальную точку и встретить там самого себя перед стартом. Но, как мы уже упоминали в предыдущей главе, кротовая нора в центре черной дыры — это дорога в один конец. «Не думаю, что вопрос в том, может ли человек, находясь в черной дыре, попасть в прошлое, — говорит физик Ричард Готт. — Вопрос в том, сможет ли он выбраться оттуда, чтобы похвастаться».

Другая машина времени может «работать» во вращающейся Вселенной. В 1949 г. знаменитый математик Курт Гёдель нашел первое решение уравнений Эйнштейна, имеющее отношение к путешествиям во времени. Если Вселенная вращается, то, обогнув ее достаточно быстро, можно оказаться в прошлом и попасть в точку старта раньше, чем вы оттуда отправились. Получается, что путешествие вокруг Вселенной одновременно является путешествием назад во времени. Когда в Институте перспективных исследований появлялись астрономы, Гёдель часто спрашивал, имеются ли у них доказательства того, что Вселенная вращается. К его разочарованию, те отвечали, что Вселенная точно расширяется, но вот суммарный спин Вселенной, вероятно, равен нулю. (В противном случае путешествия во времени, возможно, стали бы привычными, а история в том виде, в каком мы ее знаем, перестала бы существовать.)

Третий вариант: если вы будете двигаться вокруг бесконечно длинного вращающегося цилиндра, вы тоже, возможно, вернетесь раньше, чем отправились в путь. (Это решение Биллем ван Стокум нашел в 1936 г., раньше Гёделя, но автор, по-видимому, не подозревал, что его решение позволяет путешествовать во времени,) Здесь получается, что если как следует поплясать вокруг шеста с лентами на майском празднике, то можно ненароком оказаться в предыдущем апреле. (Проблема, однако, заключается в том, что цилиндр должен быть бесконечным и вращаться так быстро, что большинство материалов не выдержит и разлетится на кусочки.)

Последний на данный момент вариант путешествий во времени обнаружил в 1991 г. Ричард Готт из Принстона. Его решение основывается на обнаружении в пространстве гигантских космических струн (возможно, оставшихся со времен Большого взрыва). Допустим, предположил он, что две такие космические струны собираются столкнуться. Так вот, если быстро обогнуть эти струны в момент столкновения, попадешь в прошлое. Достоинством этого типа машины времени является то, что вам не потребуются бесконечные вращающиеся цилиндры, вращающаяся Вселенная или даже черные дыры. Проблема, однако, состоит в том, что вам придется сначала отыскать в пространстве эти самые громадные космические струны, а потом заставить их столкнуться определенным образом. К тому же и «дорога» в прошлое при этом откроется на очень короткий промежуток времени. Готт говорит: «Коллапсирующая струнная петля, достаточно большая, чтобы ее можно было обогнуть один раз и вернуться при этом на один год назад, по своей массе-энергии должна превосходить половину галактики».

Но самая многообещающая схема машины времени — так называемые обратимые кротовые норы, упомянутые в предыдущей главе. Это дыры в пространстве-времени, где человек может свободно перемещаться вперед и назад во времени. Теоретически обратимые кротовые норы — это возможность не только путешествовать быстрее света, но и перемещаться во времени. Ключ к обратимым кротовым норам — отрицательная энергия.

Машина времени для обратимых кротовых нор должна состоять из двух камер; каждая камера — из двух концентрических сфер, разделенных крошечным промежутком. Если обжать наружную сферу внутрь, по направлению к внутренней сфере, то между двумя сферами возникнет эффект Казимира и в результате отрицательная энергия. Предположим, что некая цивилизация III типа способна протянуть кротовую нору между двумя этими камерами (возможно, соорудить ее можно будет из пространственно-временной пены). Далее берем первую камеру и отправляем ее в пространство на околосветовой скорости. Время в этой камере замедляется, и часы в двух камерах теряют синхронность. Время в двух камерах, соединенных кротовой норой, идет с разной скоростью.

Находясь во второй камере, можно по кротовой норе мгновенно переместиться в первую, которая существует в более раннем времени, и оказаться в прошлом.

Реализация этой схемы связана с очень серьезными трудностями. Так, кротовая нора может оказаться совсем крошечной, намного меньше размеров атома. А концентрические сферы, возможно, потребуется обжать до расстояний планковского масштаба, чтобы получить достаточно отрицательной энергии. И последнее. Вы сможете возвращаться назад во времени лишь только в тот момент, когда была создана данная машина времени — ведь до этого момента время в обеих камерах шло совершенно синхронно!

Парадоксы и загадки времени

Путешествия во времени порождают множество проблем, как технических, так и социальных. Ларри Дуайер поднимает всевозможные моральные, юридические и этические вопросы; он говорит: «Следует ли предъявить обвинения путешественнику во времени, если он побил самого себя, только более молодого (или наоборот)? Если путешественник во времени совершит убийство и скроется в прошлом, следует ли судить его в прошлом за преступление, которое ему еще только предстоит совершить? Если он женится в прошлом, то можно ли судить его за двоеженство, если другой жене предстоит родиться, скажем, через пять тысяч лет?»

Но возможно, самые труднорешаемые проблемы — это логические парадоксы, которые возникают при путешествиях во времени. Что произойдет, к примеру, если мы убьем своих родителей до своего рождения? Это логически невозможно, поэтому получается парадокс — иногда его называют «парадокс дедушки».

Существует три способа разрешить эти парадоксы. Во-первых, не исключено, что при возвращении в прошлое вам просто придется еще раз пережить все то же самое, восстановив тем самым историю в прежнем ее виде. В этом случае вы лишены свободы воли и вынуждены повторять прошлое в том виде, в каком оно единожды было реализовано. В этой ситуации получается, что если вы отправляетесь в прошлое, чтобы передать самому себе секрет путешествий во времени, то, значит, именно так все и должно было произойти: секрет путешествий во времени действительно был доставлен из будущего. Такова судьба. (Надо сказать, при этом остается неясным, откуда взялась первоначальная идея.)

Второй вариант. Вы обладаете свободой воли и, соответственно, можете изменять прошлое, но в ограниченных пределах. Ваша свобода воли работает до тех пор, пока вы не создаете временных парадоксов. Стоит вам попытаться убить родителей до своего рождения, и загадочная сила не даст вам спустить курок. Эту позицию отстаивает российский физик Игорь Новиков. (Он аргументирует это следующим образом. Существует, к примеру, закон природы, не позволяющий нам ходить по потолку, хотя мы можем этого захотеть. Почему не предположить, что существует закон, который не даст нам убить родителей до нашего рождения? Вот просто так, неизвестная сила не даст нам спустить курок.)

Наконец, третий вариант. Вселенная расщепляется на две. Люди, которых вы убили, в точности похожи на ваших родителей, но на самом деле ими не являются, поскольку вы уже находитесь в параллельной вселенной. Похоже, именно этот вариант соответствует квантовой теории; я расскажу об этом позже, когда буду говорить о Мультивселенной.

Второй вариант рассмотрен в фильме «Терминатор-3», где Арнольд Шварценеггер играет робота из будущего, в котором власть захватили агрессивные машины. На немногих оставшихся в живых людей машины охотятся, как на зверей; но машины не в силах уничтожить лидера сопротивления. Машины направляют целую серию роботов-убийц в прошлое, в момент незадолго до рождения лидера, с заданием уничтожить его мать. Но в конце концов, после эпических сражений, в финале фильма машины все же уничтожают человеческую цивилизацию, как и планировали с самого начала.

Фильм «Назад в будущее» рассматривает третий вариант решения. Доктор Браун изобретает машину, работающую на плутонии, на базе старого автомобиля DeLorean; на самом деле это машина времени для путешествия в прошлое. Марти Макфлай (в исполнении Майкла Фокса) садится в машину, отправляется в прошлое и встречается там со своей молоденькой матерью, которая затем влюбляется в него. Возникает сложная проблема. Если будущая мать Марти отвергнет его будущего отца и они не поженятся, то герой Фокса просто не родится на свет.

Проблему немного проясняет док Браун. Он рисует на доске горизонтальную линию, представляющую течение времени в нашей Вселенной, Затем он рисует вторую линию, которая ответвляется от первой и представляет параллельную вселенную; она возникает в тот момент, когда вы изменяете прошлое. Таким образом, стоит вам двинуться назад по реке времени, как она тут же разветвляется на два рукава; одна линия времени превращается в две. Этот подход известен как концепция множественности миров, и мы обсудим ее в следующей главе.

Это означает, что все парадоксы времени можно разрешить. Если вы убили своих родителей до вашего рождения, это означает просто, что вы убили людей, которые не являются на самом деле вашими родителями — хотя идентичны им генетически, обладают той же личностью и теми же воспоминаниями.

Идея множественности миров решает по крайней мере одну серьезную проблему путешествий во времени. Для физика проблема номер один, связанная с путешествиями во времени (помимо поисков отрицательной энергии), заключается в том, что последствия излучения будут накапливаться, и в итоге произойдет одно из двух: или вы упадете замертво при попытке войти в машину, или кротовая нора схлопнется, когда вы будете через нее проходить. Эти радиационные эффекты будут накапливаться, потому что любое излучение, попавшее в портал времени, отправится в прошлое; там это излучение выйдет наружу и будет бродить по Вселенной до сегодняшнего дня, когда ему наступит время снова войти в портал. Поскольку излучение может войти в портал бесконечное число раз, внутри портала оно может достичь невероятно высокого уровня — вполне достаточного, чтобы убить любого, кто туда попадет. Но если говорить о версии с «множественными мирами», то эта проблема решится сама собой. Излучение, попавшее в машину времени, действительно отправляется в прошлое, но попадает в новую вселенную; оно не может входить в портал времени снова, снова и снова. Это означает, что существует бесконечное число вселенных, для каждого цикла своя, и в каждом цикле в портал времени проникает лишь один фотон излучения — а не бесконечно много.

В 1997 г., когда трем физикам удалось наконец доказать, что намерение Хокинга раз и навсегда запретить путешествия во времени некорректно в принципе, спорные вопросы слегка прояснились. Бернард Кей, Марек Радзиковски и Роберт Уолд показали, что путешествия во времени не противоречат никаким известным физическим законам, за исключением одного момента. Когда речь идет о передвижении во времени, все проблемы концентрируются на горизонте событий (расположенном возле входа в кротовую нору). Но этот горизонт — то самое место, где, согласно современным представлениям, теория Эйнштейна уступает место квантовым эффектам. Проблема в том, что, пытаясь рассчитать радиационные эффекты на входе в машину времени, мы вынуждены использовать теорию, которая сочетает в себе общую теорию относительности Эйнштейна и квантовую теорию излучения. Но, как бы мы ни пытались наивно объединить эти две теории, результат получается неубедительным; в некоторых местах ответ получается бесконечным, что лишено смысла.

Вот здесь и приходит время так называемой теории всего. Все проблемы путешествий через кротовые норы, терзающие физиков (к примеру, стабильность кротовой норы, опасное для жизни излучение, схлопывание кротовой норы при попытке пройти через нее), сконцентрированы на горизонте событий — в точности там, где теряет смысл теория Эйнштейна.

Таким образом, ключевым для понимания путешествий во времени является понимание физики горизонта событий — а ее может описать и объяснить только теория всего. Именно поэтому большинство физиков в настоящий момент согласно в том, что единственный способ разрешить вопрос путешествий во времени — разработать полную теорию гравитации и пространства-времени.

Теория всего должна объединить четыре фундаментальных физических взаимодействия Вселенной и позволить нам математически рассчитать, что произойдет при входе в машину времени. Только теория всего могла бы успешно рассчитать радиационные эффекты, создаваемые кротовой норой, и разъяснить вопрос о том, насколько стабильной будет кротовая нора при входе человека в машину времени. Но даже после создания такой теории нам, возможно, придется ждать несколько веков или даже дольше, прежде чем первая машина времени сможет экспериментально проверить ее выводы.

Законы путешествий во времени так тесно связаны с физикой кротовых нор, что сами путешествия, очевидно, следует отнести ко II классу невозможности.

Параллельные вселенные

— Но неужели вы имеете в виду, сэр, — спросил Питер, — что другие миры могут существовать... повсюду, буквально за углом... вот просто так?

— Ничего не может быть вероятнее, — отозвался профессор... бормоча про себя: "Интересно, чему их там учат, в этих школах".

К.С. Льюис. Лев, колдунья и платяной шкаф

Послушайте: здесь, по соседству, есть чертовски хорошая вселенная: пойдемте туда.

Эдвард Каммингс

Действительно ли альтернативные вселенные имеют право на существование? В Голливуде они давно стали излюбленным инструментом кинематографистов; в качестве примера можно привести эпизод «Звездного пути» под названием «Зеркало, зеркало». Капитан Кирк случайно попадает в странную параллельную вселенную, где Федерация планет представляет собой зловещую империю, единство которой обеспечивается жестокими завоеваниями, алчностью и грабежом. В этой вселенной Спок носит страшную бороду, а сам капитан Кирк является лидером банды жадных пиратов, всегда готовых обратить своих соперников в рабство и поубивать собственных командиров.

Альтернативные вселенные позволяют нам вволю исследовать мир по имени «что, если бы...» и его чудесные, загадочные возможности. В комиксах серии про Супермена, к примеру, присутствовало несколько альтернативных вселенных; в одной из них родная планета Супермена, Криптон, не взрывалась; в другой Супермен в конце концов раскрывает свою тайну и признается, что он и скромный Кларк Кент — одно лицо; в третьей он женится на ЛоисЛейн и у них рождаются супердети. Но можно ли считать параллельные миры исключительно вотчиной сериала «Сумеречная зона», или для них есть в современной физике серьезные предпосылки?

На протяжении всей истории человечества, включая практически все древние общества, люди верили, что существуют иные сферы, где обитают боги и духи. Церковь верит в существование рая, ада и чистилища. У буддистов есть нирвана и разные плоскости сознания. У индуистов — тысячи миров.

Христианские теологи, не в силах объяснить, где же могут находиться небеса, нередко рассуждают о том, что Бог, возможно, живет где-то в других, высших измерениях. Как ни странно, если бы высшие измерения действительно существовали, многие качества, которые мы приписываем богам, могли бы стать реальностью. Существо в высшем измерении обретало бы способность появляться и исчезать в любом месте по собственному желанию, а также проходить сквозь стены — способности, которыми в представлении человека обычно обладают божества.

В последнее время концепция параллельных вселенных является одной из самых горячо обсуждаемых тем в теоретической физике. Вообще, можно говорить о нескольких типах параллельных вселенных, которые заставляют нас заново пересмотреть наши представления о «реальности». Причем ставкой в теоретическом споре о различных параллельных вселенных служит — ни много ни мало — природа самой реальности.

В научной литературе активно обсуждается по крайней мере три типа параллельных вселенных:

а) гиперпространство, или высшие измерения;

б) мультивселенная;

в) квантовые параллельные вселенные.

Гиперпространство

Самой долгой историей научных дискуссий из всех типов параллельных вселенных может похвастаться параллельная вселенная высших измерений. Здравый смысл и органы чувств говорят нам, что мы живем в трех измерениях (длина, ширина и высота). Как бы мы ни двигали объект в пространстве, его положение всегда можно описать этими тремя координатами. Вообще, этими тремя числами человек может определить точное положение любого объекта во Вселенной, от кончика своего носа до самых отдаленных галактик.

На первый взгляд четвертое пространственное измерение противоречит здравому смыслу. К примеру, когда дым заполняет всю комнату, мы не видим, чтобы он исчезал в другом измерении. Нигде в нашей Вселенной мы не видим объектов, которые внезапно исчезали бы или уплывали в иную вселенную. Это означает, что высшие измерения, если таковые существуют, по размеру должны быть меньше атома.

Три пространственных измерения образуют фундамент, основу греческой геометрии. К примеру, Аристотель в трактате «О небе» писал: «Величина, делимая в одном измерении, есть линия, в двух — плоскость, в трех — тело, и, кроме них, нет никакой другой величины, так как три [измерения] суть все [измерения]». В150 г, н, э. Птолемей Александрийский предложил первое «доказательство» того, что высшие измерения «невозможны». В трактате «О расстоянии» он рассуждает следующим образом. Проведем три взаимно перпендикулярные прямые линии (как линии, которые образуют угол комнаты). Очевидно, провести четвертую линию, перпендикулярную трем первым, невозможно, следовательно, четвертое измерение невозможно. (На самом деле ему удалось доказать таким образом только одно: наш мозг не способен наглядно представить себе четвертое измерение. С другой стороны, компьютеры постоянно занимаются расчетами в гиперпространстве.)

На протяжении двух тысячелетий любой математик, который отваживался заговорить о четвертом измерении, рисковал подвергнуться насмешкам. В 1685 г. математик Джон Уоллис в полемике о четвертом измерении назвал его «чудовищем в природе, возможным не более, нежели химера или кентавр». В XIX в. «король математиков» Карл Гаусс разработал математику четвертого измерения в значительной степени, но побоялся публиковать результаты, опасаясь негативной реакции. Сам он, однако, проводил эксперименты и пытался определить, действительно ли чисто трехмерная греческая геометрия правильно описывает Вселенную. В одном из экспериментов он поместил трех помощников на вершинах трех соседних холмов. У каждого помощника был фонарь; свет всех трех фонарей образовал в пространстве гигантский треугольник. Сам же Гаусс тщательно измерил все углы этого треугольника и, к собственному разочарованию, обнаружил, что сумма внутренних углов треугольника действительно составляет 180°. Из этого ученый заключил, что если отступления от стандартной греческой геометрии и существуют, то они настолько малы, что их невозможно обнаружить подобными способами.

В результате честь описать и опубликовать основы математики высших измерений выпала Георгу Бернхарду Риману, ученику Гаусса. (Через несколько десятилетий эта математика целиком вошла в общую теорию относительности Эйнштейна.) На своей знаменитой лекции в 1854 г. Риман одним махом опрокинул 2000 лет владычества греческой геометрии и установил основы математики высших, криволинейных измерений; мы и сегодня пользуемся этой математикой.

В конце XIX в. замечательное открытие Римана прогремело по всей Европе и вызвало широчайший интерес публики; четвертое измерение произвело настоящую сенсацию среди артистов, музыкантов, писателей, философов и художников. Скажем, историк искусства Линда Дальримпл Хендерсон считает, что кубизм Пикассо возник отчасти под впечатлением от четвертого измерения. (Портреты женщин кисти Пикассо, на которых глаза смотрят вперед, а нос находится сбоку, представляют собой попытку представить четырехмерную перспективу, ведь при взгляде из четвертого измерения можно одновременно видеть лицо, нос и затылок женщины,) Хендерсон пишет: «Подобно черной дыре, четвертое измерение обладало загадочными свойствами, которые не удавалось до конца понять даже самим ученым. И все же четвертое измерение было гораздо более понятным и представимым, чем черные дыры или любые другие научные гипотезы после 1919 г., за исключением теории относительности».

Другие художники тоже пытались рисовать из четвертого измерения. На картине Сальвадора Дали «Распятие» Христос распят перед странным плывущим в пространстве трехмерным крестом, который на самом деле представляет собой развертку четырехмерного куба. В своей знаменитой картине «Упорство памяти» он попытался представить время как четвертое измерение— отсюда и метаформа растекшихся часов. Картина «Обнаженная фигура, спускающаяся по лестнице» Марселя Дюшана — попытка представить время как четвертое измерение через изображение нескольких стадий движения. Четвертое измерение появляется даже у Оскара Уайльда в рассказе «Кентервильское привидение», ведь привидение там живет в четвертом измерении.

Четвертое измерение фигурирует также в нескольких произведениях Герберта Уэллса, включая «Человека-невидимку», «Историю Платтнера» и «Удивительный визит». (В последнем рассказе, который с тех пор успел стать основой десятков голливудских фильмов и научно-фантастических романов, наша Вселенная каким-то образом сталкивается с параллельной вселенной. Несчастный ангел из соседней вселенной попадает под случайный выстрел охотника и проваливается в нашу Вселенную. В конце концов он, потрясенный алчностью, мелочностью и эгоизмом, царящими в нашей Вселенной, кончает жизнь самоубийством.)

Роберт Хайнлайн в романе «Число зверя» исследует идею о параллельных вселенных с иронией. В этом романе четверо храбрых землян носятся по параллельным вселенным на спортивной машине сумасшедшего профессора, способной передвигаться между измерениями.

В телесериале «Скользящие» мальчик под влиянием одной книги решает построить машину, которая позволила бы ему «скользить» между параллельными вселенными. (Можно добавить, что герой сериала прочитал мою книгу «Гиперпространство».)

Но исторически сложилось так, что физики рассматривали четвертое измерение лишь как забавную диковинку. Никаких свидетельств существования высших измерений не было. Положение начало меняться в 1919 г., когда физик Теодор Калуца написал очень спорную статью, в которой намекнул на существование высших измерений. Начав с общей теории относительности Эйнштейна, он поместил ее в пятимерное пространство (четыре пространственных измерения и пятое — время; поскольку время уже утвердилось как четвертое измерение пространства-времени, физики теперь называют четвертое пространственное измерение пятым). Если делать размер Вселенной вдоль пятого измерения все меньше и меньше, уравнения волшебным образом распадаются на две части. Одна часть описывает стандартную теорию относительности Эйнштейна, зато другая превращается в теорию света Максвелла!

Это стало поразительным откровением. Возможно, тайна света скрыта в пятом измерении! Такое решение шокировало даже Эйнштейна; казалось, оно обеспечивает элегантное объединение света и гравитации. (Эйнштейн был так потрясен предположением Калуцы, что два года раздумывал, прежде чем дал согласие на публикацию его статьи.) Эйнштейн писал Калуце: «Идея получить [объединенную теорию] посредством пятимерного цилиндра никогда не пришла бы мне в голову... С первого взгляда мне ваша идея чрезвычайно понравилась... Формальное единство вашей теории поразительно».

Много лет физики задавались вопросом: если свет — это волна, то что, собственно, колеблется? Свет способен преодолевать миллиарды световых лет пустого пространства, но пустое пространство — это вакуум, в нем нет никакого вещества. Так что же колеблется в вакууме? Теория Калуцы позволяла выдвинуть по этому поводу конкретное предположение: свет—это настоящие волны в пятом измерении. Уравнения Максвелла, точно описывающие все свойства света, получаются в ней просто как уравнения волн, которые двигаются в пятом измерении.

Представьте себе рыб, плавающих в мелком пруду. Возможно, они даже не подозревают о существовании третьего измерения, ведь их глаза смотрят в стороны, а плыть они могут только вперед или назад, вправо или влево. Возможно, третье измерение даже кажется им невозможным. Но теперь вообразите себе дождь на поверхности пруда. Рыбы не могут видеть третье измерение, но они видят тени и рябь на поверхности пруда. Точно так же теория Калуцы объясняет свет как рябь, которая двигается по пятому измерению.

Калуца дал также ответ на вопрос, где находится пятое измерение. Поскольку мы не видим вокруг никаких признаков его существования, оно должно быть «свернутым» до столь малой величины, что заметить его невозможно. (Возьмите двумерный лист бумаги и плотно скатайте его в цилиндр. Издалека цилиндр будет казаться одномерной линией. Получается, что вы свернули двумерный объект и сделали его одномерным.)

Поначалу работа Калуцы произвела сенсацию. Но в последующие годы нашлись и серьезные возражения против его теории. Каковы размеры этого нового пятого измерения? Каким образом оно свернулось? Ответов не было.

На протяжении нескольких десятилетий Эйнштейн принимался время от времени работать над этой теорией. Но после его смерти в 1955 г. теорию быстро забыли, она превратилась в забавное примечание на страницах истории физики.

Теория струн

Все изменилось с появлением поразительной новой теории, получившей название теория суперструн. К началу 1980-х гг. физики буквально утонули в море элементарных частиц. Каждый раз, разбивая атом на части при помощи мощного ускорителя частиц, они, к немалому изумлению, обнаруживали, что из расщепленного атома вылетают десятки новых частиц. Такое положение дел настолько обесьсураживало, что Роберт Оппенгеймер заявил: Нобелевскую премию по физике следует отдать тому физику, который за год не откроет ни одной новой частицы! (Энрико Ферми, в ужасе от того, как безудержно плодятся элементарные частицы с греческими буквами в названиях, сказал: «Если бы я был в состоянии запомнить названия всех этих частиц, я стал бы ботаником».) Лишь после десятилетий кропотливой работы этот густонаселенный зоопарк удалось организовать хоть в какую-то систему под названием Стандартная модель. Миллиарды долларов, тяжкий труд тысяч инженеров и физиков и 20 Нобелевских премий позволили сложить мозаику Стандартной модели буквально по кусочкам. Это поистине замечательная теория, соответствующая, насколько можно судить, всем экспериментальным данным субатомной физики.

Но Стандартная модель, несмотря на экспериментальный успех, обладает одним очень серьезным недостатком. Как говорит Стивен Хокинг, «она некрасива и достаточно произвольна». В ней по крайней мере 19 свободных параметров (в том числе масса частицы и сила ее взаимодействия с другими частицами), 36 кварков и антикварков, еще три важные субатомные частицы и их античастицы и множество других субатомных частиц со странными названиями, таких как глюоны Янга-Миллза, бозоны Хиггса, W-бозоны и Z-частицы. Хуже того, Стандартная модель ничего не говорит о гравитации. Трудно поверить, что природа на самом первичном, базовом уровне может быть столь запутанной и в высшей степени неэлегантной. Эту теорию мог бы полюбить только человек, вложивший в нее свою душу. Отсутствия красоты в Стандартной модели оказалось достаточно, чтобы физики захотели заново проанализировать свои представления о природе. Что-то здесь было не так.

Если внимательно рассмотреть развитие физики за последние несколько столетий, окажется, что одним из важнейших достижений последнего из них стало сведение всех фундаментальных физических законов в две великие теории: квантовую теорию (представленную Стандартной моделью) и общую теорию относительности Эйнштейна (которая описывает гравитацию). Замечательно, что вместе эти две теории представляют всю сумму физических знаний на фундаментальном уровне. Первая теория описывает мир очень малого — субатомный квантовый мир, где частицы исполняют свой фантастический танец, возникают из ничего и тут же пропадают снова и к тому же умудряются находиться в двух местах одновременно. Вторая теория описывает мир очень большого; ее интересуют такие предметы, как черные дыры и Большой взрыв; она пользуется языком гладких поверхностей, растянутого полотна и искаженного пространства. Эти теории во всем противоположны друг другу, они используют разную математику, разные аксиомы и разную физическую картину мира. При взгляде на них создается впечатление, что у природы две руки, совершенно не связанных друг с другом. Мало того, все попытки объединить обе теории не привели ни к каким разумным результатам. На протяжении полувека каждый физик, пытавшийся под дулом пистолета поженить квантовую теорию и общую теорию относительности, неожиданно для себя обнаруживал, что при любой попытке добиться своего теория разлетается в клочья и дает в ответ бесконечность, лишенную всякого смысла.

Все изменилось с появлением на сцене теории суперструн, которая утверждает, что электрон и другие субатомные частицы представляют собой не что иное, как различные колебания струны, работающей примерно как крошечная резиновая лента. Если дернуть за натянутую резинку, она будет вибрировать на разные лады — при этом каждая нота соответствует конкретной субатомной частице. Таким образом, теория суперструн объясняет существование сотен субатом<

Наши рекомендации