Графическое изображение гармонических колебаний. Векторная диаграмма.
Решение многих вопросов в теории колебаний значительно упрощается, если использовать графический метод изображения гармонических колебаний в виде векторов на плоскости. Такое изображение называется векторной диаграммой колебаний (Рисунок 20.1).
Рисунок 20.1 – Векторная диаграмма гармонического колебаний.
Последовательность построения векторной диаграммы колебания, заданного уравнением , такова:
1. Выберем на плоскости ось Х, на ней возьмем точку О – начало координат.
2. Под углом α, равном начальной фазе колебаний, к оси Х, из точки О откладываем вектор, равный по длине амплитуде А колебаний.
3. Вектор А равномерно вращаем вокруг точки О против часовой стрелки с угловой скоростью, равной циклической частоте колебаний.
Тогда в любой момент времени угол вектора А с осью Х равен . Соответственно проекция конца вектора А на ось Х будет совершать колебания по закону , а сама проекция вектора Ав любой момент времени будет равна смещению х колеблющейся точки от положения равновесия. Если начальная фаза колебаний , то в начальный момент времени вектор А откладываем из точки О вдоль направления оси Х.
Сложение сонаправленных колебаний с неравными, но близкими частотами.
Частоты складываемых колебаний не равны , но разность частот много меньше и ω1, и ω2. Условие близости складываемых частот записывается соотношениями .
Примером сложения сонаправленных колебаний с близкими частотами является движение горизонтального пружинного маятника, жесткость пружин которого немного различна k1 и k2.
Пусть амплитуды складываемых колебаний одинаковы , а начальные фазы равны нулю . Тогда уравнения складываемых колебаний имеют вид:
, .
Результирующее колебание описывается уравнением:
. (20.4)
Получившееся уравнение колебаний зависит от произведения двух гармонических функций: одна – с частотой , другая – с частотой , где ω близка к частотам складываемых колебаний (ω1 или ω2). Результирующее колебание можно рассматривать как гармоническое колебание с изменяющейся по гармоническому закону амплитудой. Такой колебательный процесс называется биениями.
Биениями называются периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами.
Строго говоря, результирующее колебание в общем случае не является гармоническим колебанием.
Абсолютное значение косинуса взято потому, что амплитуда – величина положительная или;
(20.5)
Характер зависимости хрез.при биениях показан на Рисунке 20.3.
Рисунок 20.3 – Зависимость смещения от времени при биениях.
Амплитуда биений медленно меняется с частотой . Абсолютное значение косинуса повторяется, если его аргумент изменяется на π, значит и значение результирующей амплитуды повторится через промежуток времени τб, называемый периодом биений. Величину периода биений можно определить из следующего соотношения:
.
Величина - период биений.
Величина есть период результирующего колебания (Рисунок 20.3).