Опытное обоснование основных положений МКТ строения вещества. Масса и размер молекул. Постоянная Авогадро.

План ответа

1. Основные положения. 2. Опытные доказа­тельства. 3. Микро-характеристики вещества.

Молекулярно-кинетическая теория — это раз­дел физики, изучающий свойства различных состоя­ний вещества, основывающийся на представлениях о существовании молекул и атомов, как мельчайших частиц вещества. В основе МКТ лежат три основных положения:

1. Все вещества состоят из мельчайших час­тиц: молекул, атомов или ионов.

2. Эти частицы находятся в непрерывном хао­тическом движении, скорость которого определяет температуру вещества.

3. Между частицами существуют силы притя­жения и отталкивания, характер которых зависит от расстояния между ними.

Основные положения МКТ подтверждаются многими опытными фактами. Существование моле­кул, атомов и ионов доказано экспериментально, мо­лекулы достаточно изучены и даже сфотографирова­ны с помощью электронных микроскопов. Способ­ность газов неограниченно расширяться и занимать весь предоставленный им объем объясняется непре­рывным хаотическим движением молекул. Упругость газов, твердых и жидких тел, способность жидкостейсмачивать некоторые твердые тела, процессы окра­шивания, склеивания, сохранения формы твердыми телами и многое другое говорят о существовании сил притяжения и отталкивания между молекулами. Явление диффузии — способность молекул одного вещества проникать в промежутки между молекула­ми другого — тоже подтверждает основные положе­ния МКТ. Явлением диффузии объясняется, напри­мер, распространение запахов, смешивание разно­родных жидкостей, процесс растворения твердых тел в жидкостях, сварка металлов путем их расплавления или путем давления. Подтверждением непре­рывного хаотического движения молекул является также и броуновское движение — непрерывное хао­тическое движение микроскопических частиц, не­растворимых в жидкости.

Движение броуновских частиц объясняется хаотическим движением частиц жидкости, которые сталкиваются с микроскопическими частицами и приводят их в движение. Опытным путем было дока­зано, что скорость броуновских частиц зависит от температуры жидкости. Теорию броуновского движе­ния разработал А. Эйнштейн. Законы движения час­тиц носят статистический, вероятностный характер. Известен только один способ уменьшения интенсив­ности броуновского движения — уменьшение темпе­ратуры. Существование броуновского движения убе­дительно подтверждает движение молекул.

Любое вещество состоит из частиц, поэтому количество вещества принято считать пропорцио­нальным числу частиц, т. е. структурных элементов, содержащихся в теле, v.

Единицей количества вещества является моль. Моль — это количество вещества, содержащее столько же структурных элементов любого вещества, сколько содержится атомов в 12 г углерода С12. От­ношение числа молекул вещества к количеству ве­щества называютпостоянной Авогадро:

na= N/v. na =6,02 • 1023моль-1.

Постоянная Авогадро показывает, сколько ато­мов и молекул содержится в одном моле вещества.Мо­лярной массой называют величину, равную отноше­нию массы вещества к количеству вещества:

М = m/v.

Молярная масса выражается в кг/моль. Зная молярную массу, можно вычислить массу одной мо­лекулы:

m0 = m/N = m/vNA = М/NA

Средняя масса молекул обычно определяется химическими методами, постоянная Авогадро с вы­сокой точностью определена несколькими физиче­скими методами. Массы молекул и атомов со значи­тельной степенью точности определяются с помощью масс-спектрографа.

Массы молекул очень малы. Например, масса молекулы воды: т = 29,9 •10 -27 кг.

Молярная масса связана с относительной мо­лекулярной массой Mr. Относительная молярная масса — это величина, равная отношению массы мо­лекулы данного вещества к 1/12 массы атома угле­рода С12. Если известна химическая формула вещест­ва, то с помощью таблицы Менделеева может быть определена его относительная масса, которая, будучи выражена в килограммах, показывает величину мо­лярной массы этого вещества.

Диаметром молекулы принято считать мини­мальное расстояние, на которое им позволяют сбли­зиться силы отталкивания. Однако понятие размера молекулы является условным. Средний размер моле­кул порядка 10-10 м.

Билет №9

Идеальный газ. Основное уравнение МКТ идеального газа. Температура и ее измерение. Абсолютная температура.

План ответа

1. Понятие идеального газа, свойства. 2. Объ­яснение давления газа. 3. Необходимость измерения температуры. 4. Физический смысл температуры. 5. Температурные шкалы. 6. Абсолютная темпера­тура.

Для объяснения свойств вещества в газообраз­ном состоянии используется модель идеального газа. Идеальным принято считать газ, если:

а) между мо­лекулами отсутствуют силы притяжения, т. е. моле­кулы ведут себя как абсолютно упругие тела;

б) газ очень разряжен, т. е. расстояние между молекулами намного больше размеров самих молекул;

в) тепловое равновесие по всему объему достигается мгновенно. Условия, необходимые для того, чтобы реальный газ обрел свойства идеального, осуществляются при со­ответствующем разряжении реального газа. Некото­рые газы даже при комнатной температуре и атмо­сферном давлении слабо отличаются от идеальных.

Основными параметрами идеального газа являются давление, объем и температура.

Одним из первых и важных успехов МКТ было качественное и количественное объяснение давления газа на стенки сосуда.Качественное объяснение за­ключается в том, что молекулы газа при столкнове­ниях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела и передают свои импульсы стенкам сосуда.

На основании использования основных поло­жений молекулярно-кинетической теории было по­лучено основное уравнение МКТ идеального газа, ко­торое выглядит так: р = 1/3 т0пv2.

Здесь р — давление идеального газа, m0

масса молекулы, п — концентрация молекул, v2 — средний квадрат скорости молекул.

Обозначив среднее значение кинетической энергии поступательного движения молекул идеаль­ного газа Еk получим основное уравнение МКТ иде­ального газа в виде: р = 2/3nЕk.

Однако, измерив только давление газа, невоз­можно узнать ни среднее значение кинетической энергии молекул в отдельности, ни их концентра­цию. Следовательно, для нахождения микроскопиче­ских параметров газа нужно измерение какой-то еще физической величины, связанной со средней кинети­ческой энергией молекул. Такой величиной в физике является температура.Температура — скалярная физическая величина, описывающая состояние тер­модинамического равновесия (состояния, при кото­ром не происходит изменения микроскопических па­раметров). Как термодинамическая величина температура характеризует тепловое состояние системы и измеряется степенью его отклонения от принятого за нулевое, как молекулярно-кинетическая величина характеризует интенсивность хаотического движения молекул и измеряется их средней кинетической энергией.

Ek = 3/2 kT, где k = 1,38 • 10-23 Дж/К и назы­ваетсяпостоянной Больцмана.

Температура всех частей изолированной си­стемы, находящейся в равновесии, одинакова. Изме­ряется температура термометрами в градусах раз­личных температурных шкал. Существует абсолют­ная термодинамическая шкала (шкала Кельвина) и различные эмпирические шкалы, которые отличают­ся начальными точками. До введения абсолютной шкалы температур в практике широкое распростра­нение получила шкала Цельсия (за О °С принята точка замерзания воды, за 100 °С принята точка ки­пения воды при нормальном атмосферном давлении).

Единица температуры по абсолютной шкале называетсяКельвином и выбрана равной одному гра­дусу по шкале Цельсия 1 К = 1 °С. В шкале Кельви­на за ноль принят абсолютный ноль температур, т. е. температура, при которой давление идеального газа при постоянном объеме равно нулю. Вычисления да­ют результат, что абсолютный ноль температуры ра­вен -273 °С. Таким образом, между абсолютной шкалой температур и шкалой Цельсия существует связь Т = t °С + 273. Абсолютный ноль температур недостижим, так как любое охлаждение основано на испарении молекул с поверхности, а при приближе­нии к абсолютному нулю скорость поступательного движения молекул настолько замедляется, что испарение практически прекращается. Теоретически при абсолютном нуле скорость поступательного движения молекул равна нулю, т. е. прекращается тепловое движение молекул.

Билет №10

Работа силы. Мощность.

Работа силы равна произведению модулей силы и перемещения и косинуса угла между ними. Эта формула справедлива в том случае, когда сила постоянна и перемещение тела происходит вдоль прямой.

A= F|∆r|cosα

Знак работы определяется знаком косинуса угла между силой и перемещением.

Если α<90˚, то A>0,

Если α>90˚, то A<0

Если α=0, то A=0

Если на тело действует несколько сил, то полная работа (сумма работ всех сил) равна работе результирующей силы.

A = F1r|∆r|+F2r|∆r|+…=A1+A2+… .

В Международной системе единиц работа измеряется в джоулях (Дж)

1 Дж = 1 Н·1 м = 1 Н·м

Джоуль – это работа, совершаемая силой 1 Н на перемещение 1 м, если направления силы и перемещения совпадают.

Мощностью называют отношение работы А к интервалу времени ∆t, за который эта работа совершена. N = A/∆t

Если мы в формулу мощности подставим формулу работы, то получится, что мощность равна произведению модуля вектора силы на модуль вектора скорости и на косинус угла между направлениями этих векторов. N = FVcosα

В СИ мощность выражается в ваттах (Вт). Мощность равна 1 Вт, если работа 1 Дж совершается за 1 с.

Билет №11

Наши рекомендации