История создания и область применения асинхронных двигателей
Асинхронные машины
История создания и область применения асинхронных двигателей
В настоящее время асинхронные машины используются в основном в режиме двигателя. Машины мощностью больше 0.5 кВт обычно выполняются трёхфазными, а при меньшей мощности – однофазными.
Впервые конструкция трёхфазного асинхронного двигателя была разработана, создана и опробована нашим русским инженером М. О. Доливо-Добровольским в 1889-91 годах. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. На выставке было представлено три трёхфазных двигателя разной мощности. Самый мощный из них имел мощность 1.5 кВт и использовался для приведения во вращение генератора постоянного тока. Конструкция асинхронного двигателя, предложенная Доливо-Добровольским, оказалась очень удачной и является основным видом конструкции этих двигателей до настоящего времени.
За прошедшие годы асинхронные двигатели нашли очень широкое применение в различных отраслях промышленности и сельского хозяйства. Их используют в электроприводе металлорежущих станков, подъёмно-транспортных машин, транспортёров, насосов, вентиляторов. Маломощные двигатели используются в устройствах автоматики.
Широкое применение асинхронных двигателей объясняется их достоинствами по сравнению с другими двигателями: высокая надёжность, возможность работы непосредственно от сети переменного тока, простота обслуживания.
Режимы работы трёхфазной асинхронной машины
Асинхронная машина может работать в режимах двигателя, генератора и электромагнитного тормоза.
Режим двигателя
Этот режим служит для преобразования потребляемой из сети электрической энергии в механическую.
Рис. 2.9
Пусть обмотка статора создаёт магнитное поле, вращающееся с частотой n0 в указанном направлении (рис. 2.9). Это поле будет наводить согласно закону электромагнитной индукции в обмотке ротора ЭДС. Направление ЭДС определяется по правилу правой руки и показано на рисунке (силовые линии должны входить в ладонь, а большой палец нужно направить по направлению движения проводника, т.е. ротора, относительно магнитного поля). В обмотке ротора появится ток, направление которого примем совпадающим с направлением ЭДС. В результате взаимодействия обмотки ротора с током и вращающегося магнитного поля возникает электромагнитная сила F. Направление силы определяется по правилу левой руки (силовые линии должны входить в ладонь, четыре пальца – по направлению тока в обмотке ротора). В данном режиме (рис. 2.9) электромагнитная сила создаст вращающий момент, под действием которого ротор начнёт вращаться с частотой n. Направление вращения ротора совпадает с направлением вращения магнитного поля. Чтобы изменить направление вращения ротора (реверсировать двигатель), нужно изменить направление вращения магнитного поля. Для реверса двигателя нужно изменить порядок чередования фаз подведённого напряжения, т.е. переключить две фазы.
Пусть под действием электромагнитного момента ротор начал вращаться с частотой вращения магнитного поля (n=n0). При этом в обмотке ротора ЭДС E2 будет равна нулю. Ток в обмотке ротора I2=0, электромагнитный момент M тоже станет равным нулю. За счёт этого ротор станет вращаться медленнее, в обмотке ротора появится ЭДС, ток. Возникнет электромагнитный момент. Таким образом, в режиме двигателя ротор будет вращаться несинхронно с магнитным полем. Частота вращения ротора будет изменяться при изменении нагрузки на валу. Отсюда появилось название двигателя – асинхронный (несинхронный). При увеличении нагрузки на валу двигатель должен развивать больший вращающий момент, а это происходит при снижении частоты вращения ротора. В отличие от частоты вращения ротора частота вращения магнитного поля не зависит от нагрузки. Для сравнения частоты вращения магнитного поля n0 и ротора n ввели коэффициент, который назвали скольжением и обозначили буквой S. Скольжение может измеряться в относительных единицах и в процентах.
S=(n0−n)/n0 или S=[(n0−n)/n0]100%.
При пуске в ход асинхронного двигателя n=0,S=1. В режиме идеального холостого хода n=n0,S=0. Таким образом, в режиме двигателя скольжение изменяется в пределах:
0<S≤1.
При работе асинхронных двигателей в номинальном режиме:
Sн=(2÷5)%.
В режиме реального холостого хода асинхронных двигателей:
Sхх=(0,2÷0,7)%.
Режим генератора
Этот режим служит для преобразования механической энергии в электрическую, т.е. асинхронная машина должна развивать на валу тормозной момент и отдавать в сеть электрическую энергию. Асинхронная машина переходит в режим генератора, если ротор начинает вращаться быстрее магнитного поля (n>n0). Этот режим может наступить, например, при регулировании частоты вращения ротора.
Пусть n>n0. При этом изменится (по сравнению с режимом двигателя) направление ЭДС и тока ротора, а также изменится направление электромагнитной силы и электромагнитного момента (рис. 2.10). Машина начинает развивать на валу тормозной момент (потребляет механическую энергию) и возвращает в сеть электрическую энергию (изменилось направление тока ротора, т.е. направление передачи электрической энергии).
Рис. 2.10
При n>n0,S=0.
При n→+∞,S→−∞.
Таким образом, в режиме генератора скольжение изменяется в пределах:
0>S>−∞.
Цепь статора
а) ЭДС статора.
Магнитное поле, создаваемое обмоткой статора, вращается относительно неподвижного статора с частотой n0=60f)/p и будет наводить в обмотке статора ЭДС. Действующее значение ЭДС, наводимой этим полем в одной фазе обмотки статора определяется выражением:
E1=4,44w1k1fΦ,
где: k1=0.92÷0.98 – обмоточный коэффициент;
f1=f – частота сети;
w1 – число витков одной фазы обмотки статора;
Φ – результирующее магнитное поле в машине.
б) Уравнение электрического равновесия фазы обмотки статора.
Это уравнение составлено по аналогии с катушкой с сердечником, работающей на переменном токе.
.
Здесь Ú и Ú1 – напряжение сети и напряжение, подведённое к обмотке статора.
R1 – активное сопротивление обмотки статора, связанное с потерями на нагрев обмотки.
x1 – индуктивное сопротивление обмотки статора, связанное с потоком рассеяния.
z1 – полное сопротивление обмотки статора.
İ1 – ток в обмотке статора.
При анализе работы асинхронных машин часто принимают I1z1=0. Тогда можно записать:
U1≈E1=4,44w1k1fΦ.
Из этого выражения следует, что магнитный поток Φ в асинхронной машине не зависит от её режима работы, а при заданной частоте сети f зависит только от действующего значения приложенного напряжения U1. Аналогичное соотношение имеет место и в другой машине переменного тока – в трансформаторе.
Цепь ротора
а) Частота ЭДС и тока ротора.
При неподвижном роторе частота ЭДС f2 равна частоте сети f.
f2=f=(n0p)/60.
При вращающемся роторе частота ЭДС ротора зависит от частоты вращения магнитного поля относительно вращающегося ротора, которая определяется соотношением:
n'=n0−n.
Тогда частота ЭДС вращающегося ротора:
.
Частота ЭДС ротора изменяется пропорционально скольжению и в режиме двигателя имеет наибольшее значение в момент пуска в ход.
Пусть при f=50Гц, номинальное скольжение Sн=2%. Тогда при номинальной частоте вращения ротора f2=f×Sн=1Гц.
Таким образом, в обмотке ротора асинхронной машины частота наводимой ЭДС зависит от частоты вращения ротора.
б) ЭДС ротора.
При неподвижном роторе f2=f и действующее значение ЭДС определяется по аналогии с E1.
E2=4,44w2k2fΦ,
где: w2 и k2 – соответственно число витков и обмоточный коэффициент обмотки ротора.
Если ротор вращается, то f2=f×Sн и ЭДС вращающегося ротора определяется соотношением:
E2S=4,44w2k2f2Φ=E2S.
ЭДС, наводимая в обмотке ротора, изменяется пропорционально скольжению и в режиме двигателя имеет наибольшее значение в момент пуска в ход.
Отношение ЭДС статора к ЭДС неподвижного ротора называется коэффициентом трансформации асинхронной машины.
k= | E1 | = | w1k1 | . |
E2 | w2k2 |
в) ток ротора.
Запишем уравнение равновесия для одной фазы короткозамкнутого ротора.
При неподвижном роторе.
,
где: x2=2πfL2 – индуктивное сопротивление обмотки неподвижного ротора, связанное с потоком рассеяния;
R2 – активное сопротивление обмотки ротора, связанное с потерями на нагрев обмотки.
При вращающемся роторе.
где: x2S=2πf2L2=2πfL2S=x2S – индуктивное сопротивление обмотки вращающегося ротора.
Для тока ротора в общем случае можно получить такое соотношение:
.
Отсюда следует, что ток ротора зависит от скольжения и возрастает при его увеличении, но медленнее, чем ЭДС.
г) поле ротора
Обмотка ротора, как и обмотка статора, является многофазной и при появлении в ней тока создаёт своё вращающееся магнитное поле. Обозначим через n2 частоту вращения магнитного поля ротора относительно ротора.
n2=(60f2)/p=(60fS)/p.
Здесь p – число пар полюсов обмотки ротора, оно всегда равно числу пар полюсов обмотки статора.
Относительно статора магнитное поле ротора вращается с частотой
.
Из полученного соотношения следует, что магнитное поле ротора относительно статора вращается с той же частотой, что и магнитное поле статора. Таким образом, магнитные поля ротора и статора относительно друг друга неподвижны. Поэтому при анализе работы асинхронной машины можно применить те же соотношения, что и трансформаторе.
Ток статора
Так как результирующее магнитное поле асинхронной машины не зависит от её режима работы, можно составить для одной фазы уравнение магнитодвижущих сил, приравняв магнитодвижущую силу в режиме холостого хода к сумме магнитодвижущих сил в режиме нагрузки.
İ0w1k1=İ1w1k1+İ2w2k2
Отсюда İ1=İ0+İ'2.
Здесь I0 – ток в обмотке статора в режиме идеального холостого хода, I'2=−I2(w2k2)/(w1k1) – составляющая тока статора, которая компенсирует действие магнитодвижущей силы обмотки ротора. Полученное выражение для тока статора отражает свойство саморегулирования асинхронной машины. Чем больше ток ротора, тем больше ток статора. В режиме холостого хода ток статора минимальный. В режиме нагрузки ток статора возрастает. Ток реального холостого хода асинхронной машины I0=(20÷60)%I1н и значительно больше по сравнению с номинальным током, чем у трансформатора. Это объясняется тем, что величина тока I0 зависит от магнитного сопротивления среды, в которой создаётся магнитное поле. У асинхронной машины, в отличие от трансформатора, есть воздушный зазор, который создаст большое сопротивление магнитному полю.
Прямое включение в сеть
Это самый простой и самый дешевый способ пуска. На двигатель вручную или с помощью дистанционного управления подается номинальное напряжение. Прямое включение в сеть допускается, если мощность двигателя не превышает 5% от мощности трансформатора, если от него питается и осветительная сеть. Ограничение по мощности объясняется бросками тока в момент пуска, что приводит к снижению напряжения на зажимах вторичных обмоток трансформатора. Если от трансформатора не питается осветительная сеть, то прямое включение в сеть можно применять для двигателей, мощность которых не превышает 25% от мощности трансформатора.
Изменение скольжения
Этот способ используют в приводе тех механизмов, где установлены асинхронные двигатели с фазным ротором. Например, в приводе подъемно-транспортных машин. В цепь фазного ротора вводится регулировочный реостат. Увеличение активного сопротивления ротора не влияет на величину критического момента, но увеличивает критическое скольжение (рис. 2.21).
На рис. 2.21 приведены механические характеристики асинхронного двигателя при разных сопротивлениях регулировочного реостата Rр3>Rр2>0,Rр1=0.
Рис. 2.21
Как следует из рис. 2.21 при этом способе можно получить большой диапазон регулирования частоты вращения в сторону понижения. Основные недостатки этого способа:
- Из-за больших потерь на регулировочном реостате снижается коэффициент полезного действия, т.е. способ неэкономичный.
- Механическая характеристика асинхронного двигателя с увеличением активного сопротивления ротора становится мягче, т.е. снижается устойчивость работы двигателя.
- Невозможно плавно регулировать частоту вращения.
Из-за перечисленных недостатков этот способ применяют для кратковременного снижения частоты вращения.
Изменение числа пар полюсов
Эти двигатели (многоскоростные) имеют более сложную обмотку статора, позволяющую изменять ее число пар полюсов, и короткозамкнутый ротор. При работе асинхронного двигателя необходимо, чтобы обмотки ротора и статора имели одинаковое число пар полюсов. Только короткозамкнутый ротор способен автоматически приобретать то же число пар полюсов, что и поле статора. Многоскоростные двигатели нашли широкое применение в приводе металлорежущих станков. Нашли применение двух, трех и четырех скоростные двигатели.
На рис. 2.22 показана схема соединения и магнитное поле статора двигателя при последовательном (б) и параллельном (а) соединении полуобмоток.
Рис. 2.22
У двухскоростного двигателя обмотка каждой фазы состоит из двух полуобмоток. Включая их последовательно или параллельно можно в 2 раза изменять число пар полюсов.
У четырехскоростного двигателя на статоре должно размещаться две независимые обмотки с разным числом пар полюсов. Каждая из обмоток позволяет в два раза изменять число пар полюсов. Например, у двигателя, работающего от сети c частотой f=50 Гц, со следующими частотами вращения 3000/1500/1000/500 [об/мин] с помощью одной из обмоток статора можно получить частоту вращения 3000 об/мин и 1500 об/мин (при этом p=1 и p=2). С помощью другой из обмоток можно получить частоту вращения 1000 об/мин и 500 об/мин (при этом p=3 и p=6).
При переключении числа пар полюсов изменяется и магнитный поток в зазоре, что приводит к изменению критического момента Mкр (рис. 2.23.б). Если при изменении числа пар полюсов одновременно изменять и подведенное напряжение, то критический момент может остаться неизменным (рис. 2.23.а). Поэтому при этом способе регулирования могут быть получены два вида семейства механических характеристик (рис. 2.23).
Достоинства этого способа регулирования: сохранение жесткости механических характеристик, высокий К.П.Д. Недостатки: ступенчатое регулирование, большие габариты и большая стоимость двигателя.
Рис. 2.23
Генераторное торможение
Машина переходит в режим генератора, если n>n0, т.е. если ротор вращается быстрее магнитного поля. Этот режим может наступить при регулировании скорости вращения увеличением числа пар полюсов или уменьшением частоты источника питания, а также в подъемно-транспортных машинах при опускании груза, когда под действием силы тяжести груза ротор начинает вращаться быстрее магнитного поля.
В режиме генератора изменяется направление электромагнитного момента, т.е. он становится тормозным, под действием чего происходит быстрое снижение скорости вращения. Одновременно изменяется фаза тока в обмотке статора, что приводит к изменению направления передачи электрической энергии. В режиме генератора происходит возврат энергии в сеть.
На рис. 2.25 представлены механические характеристики при генераторном торможении за счет опускания груза (а) и понижении частоты источника питания (б).
Рис. 2.25
Пусть двигатель с заданной нагрузкой на валу работал в точке A (рис. 2.25.а). Если под действием опускаемого груза ротор начнет вращаться быстрее магнитного поля и рабочая точка попадает в точку B, то nв>n0, машина будет развивать тормозной момент и частота вращения снизится до величины меньшей n0. Одно из достоинств генераторного торможения у асинхронных машин заключается в том, что переход в режим генератора происходит автоматически, как только ротор начинает вращаться быстрее магнитного поля. Это защищает асинхронные двигатели от аварийной ситуации, которая может наступить у двигателей постоянного тока. Асинхронные двигатели не могут пойти в разнос. Максимальная частота вращения ротора ограничивается частотой вращения магнитного поля.
Пусть двигатель работает с заданной нагрузкой на валу в точке A характеристики 1 (рис. 2.25.б). При снижении частоты источника питания рабочая точка должна перейти в точку C характеристики 2. Но если nА окажется больше новой пониженной частоты вращения магнитного поля n02, то машина из точки A переходит в точку B, работая на участке B–n02 в режиме генератора. За счет этого происходит быстрое снижение частоты вращения. На участке n02–C машина работает в режиме двигателя, но происходит дальнейшее уменьшение частоты вращения ротора, пока вращающий момент не станет равным моменту нагрузки (т. C). Новое состояние равновесия с заданной нагрузкой наступает в точке C. Генераторное торможение является самым экономичным режимом, т.к. происходит преобразование механической энергии в электрическую и возврат энергии в сеть. Одним из достоинств этого тормозного режима является его самопроизвольное появление, т.е. не требуется никакая контролирующая аппаратура.
Динамическое торможение
Этот тормозной режим используется для точной остановки мощных двигателей. На время торможения обмотка статора отключается от сети переменного напряжения и подключается и источнику с постоянным напряжением. При этом обмотка статора будет создавать постоянное неподвижное магнитное поле. При вращении ротора относительно этого магнитного поля изменяется направление ЭДС и тока ротора, что приведет к изменению направления электромагнитного момента, т.е. он станет тормозным. Под действием этого момента происходит торможение. Изменяя величину подведенного к обмотке статора напряжения, можно регулировать время торможения. Основным достоинством этого тормозного режима является точная остановка. Постоянное напряжение можно подводить к обмотке статора только на время торможения. После остановки двигатель нужно отключить от сети постоянного тока.
На рис. 2.26 показаны схемы включения асинхронного двигателя и механические характеристики при динамическом торможении.
Пусть двигатель работает с нагрузкой в точке A. При подаче на обмотку статора постоянного напряжения рабочая точка перейдет из точки A в точку B тормозной характеристики 2.
Рис. 2.26
Под действием тормозного электромагнитного момента будет происходить снижение частоты вращения до полной остановки (точка 0).
Основные недостатки динамического торможения: необходим источник постоянного тока и неэкономичность.
Асинхронные машины
История создания и область применения асинхронных двигателей
В настоящее время асинхронные машины используются в основном в режиме двигателя. Машины мощностью больше 0.5 кВт обычно выполняются трёхфазными, а при меньшей мощности – однофазными.
Впервые конструкция трёхфазного асинхронного двигателя была разработана, создана и опробована нашим русским инженером М. О. Доливо-Добровольским в 1889-91 годах. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. На выставке было представлено три трёхфазных двигателя разной мощности. Самый мощный из них имел мощность 1.5 кВт и использовался для приведения во вращение генератора постоянного тока. Конструкция асинхронного двигателя, предложенная Доливо-Добровольским, оказалась очень удачной и является основным видом конструкции этих двигателей до настоящего времени.
За прошедшие годы асинхронные двигатели нашли очень широкое применение в различных отраслях промышленности и сельского хозяйства. Их используют в электроприводе металлорежущих станков, подъёмно-транспортных машин, транспортёров, насосов, вентиляторов. Маломощные двигатели используются в устройствах автоматики.
Широкое применение асинхронных двигателей объясняется их достоинствами по сравнению с другими двигателями: высокая надёжность, возможность работы непосредственно от сети переменного тока, простота обслуживания.