Точечные оценки параметров генеральной совокупности.
Понятие генеральной совокупности и выборки. Объём выборки, репрезентативость. Статистическое распределение (вариационный ряд). Примеры. Характеристики выборки.
Генеральная совокупность – множество каких-либо однородных элементов, которые предстоит изучить статистическими методами; множество всех значений случайной величины, а варианта – одно из значений генеральной совокупности.
Выборка – это некоторая часть элементов, выделяемая по определенному правилу из ген. совокупности.
Объём выборки – это число выделяемых элементов в генеральной совокупности. Минимальным, статистическим допустимым объёмом выборки, считается три элемента.
Выборка производится с целью описания генеральной совокупности. Если это описание является полным и корректным, то выборка является репрезентативной. Результаты повторных измерений какой-либо физической величины х, проводимых в одинаковых условиях, часто называют выборкой из бесконечной генеральной совокупности, поскольку считается, что в опыте теоретически возможно произвести сколь угодно большое число измерений при одинаковых условиях, а множество всех возможных результатов измерений и образуют данную генеральную совокупность. Математическое ожидание такой генеральной совокупности считается истинным значением измеряемой величины.Таким образом, в ходе нескольких повторных измерений физической величины получают набор результатов, являющийся выборкой объёма n:х1, х2,…..,хn, где n-число повторных измерений.Как дискретные, так и непрерывные, случайные величины могут быть получены в результате опыта – наблюдения – то есть в виде вариационнго ряда: 4,67; 5,49; 5351 и так далее. Однако такой способ задания является малоинформативным – требующим дополнительной обработки, для какого-либо даже поверхностного представления о случайной величине.
К выборочным характеристикам отнтсятся:
· среднее значение (Хср), как оценка математического ожидания
· выборочное среднеквадратическое отклонение (Sx), как оценка генерального значения среднеквадратического отклонения (σ) выборочная дисперсия (Sx2)
N- число элементов выборки
Точечные оценки параметров генеральной совокупности.
.Пусть выборка объема n представлена в виде вариационного ряда. Назовем выборочной средней величину
Величина называется относительной частотой значения признака xi. Если значения признака, полученные из выборки не группировать и не представлять в виде вариационного ряда, то для вычисления выборочной средней нужно пользоваться формулой .
Естественно считать величину выборочной оценкой параметра Mx. Выборочная оценка параметра, представляющая собой число, называетсяточечной оценкой.
Выборочную дисперсию
можно считать точечной оценкой дисперсии Dx генеральной совокупности.
Приведем еще один пример точечной оценки. Пусть каждый объект генеральной совокупности характеризуется двумя количественными признаками x и y. Например, деталь может иметь два размера – длину и ширину. Можно в различных районах измерять концентрацию вредных веществ в воздухе и фиксировать количество легочных заболеваний населения в месяц. Можно через равные промежутки времени сопоставлять доходность акций данной корпорации с каким-либо индексом, характеризующим среднюю доходность всего рынка акций. В этом случае генеральная совокупность представляет собой двумерную случайную величину x,h. Эта случайная величина принимает значения x, y на множестве объектов генеральной совокупности. Не зная закона совместного распределения случайных величин x иh, мы не можем говорить о наличии или глубине корреляционной связи между ними, однако некоторые выводы можно сделать, используя выборочный метод.
Выборку объема n в этом случае представим в виде таблицы, где
i-тый отобранный объект (i= 1,2,...n)представлен парой чисел xi, yi :
x1 | x2 | ... | xn |
y1 | y2 | ... | yn |
Выборочный коэффициент корреляции рассчитывается по формуле
Здесь
, ,
.
Выборочный коэффициент корреляции можно рассматривать как точечную оценку коэффициента корреляции rxh, характеризующего генеральную совокупность.
Выборочные параметры или любые другие зависят от того, какие объекты генеральной совокупности попали в выборку и различаются от выборки к выборке. Поэтому они сами являются случайными величинами.
Пусть выборочный параметр dрассматривается как выборочная оценка параметра D генеральной совокупности и при этом выполняется равенство
Md =D.
Такая выборочная оценка называется несмещенной.
Для доказательства несмещённости некоторых точечных оценок будем рассматривать выборку объема n как систему n независимых случайных величин x1,x2,... xn , каждая из которых имеет тот же закон распределения с теми же параметрами, что и случайная величина x, представляющая генеральную совокупность. При таком подходе становятся очевидными равенства: Mxi = Mxi =Mx;
Dxi = Dxi =Dx для всех k = 1,2,...n.
Теперь можно показать, что выборочная средняя есть несмещенная оценка средней генеральной совокупности или , что то же самое, математического ожидания интересующей нас случайной величины x :
.
Выведем формулу для дисперсии выборочной средней:
.
Найдем теперь, чему равно математическое ожидание выборочной дисперсии s 2. Сначала преобразуем s 2 следующим образом:
Здесь использовано преобразование:
Теперь, используя полученное выше выражение для величины s 2, найдем ее математическое ожидание.
.
Так как Ms 2 ¹ Dx, выборочная дисперсия не является несмещенной оценкой дисперсии генеральной совокупности.
Чтобы получить несмещенную оценку дисперсии генеральной совокупности, нужно умножить выборочную дисперсию на . Тогда получится величина , называемая исправленнойвыборочнойдисперсией.
Пусть имеется ряд несмещенных точечных оценок одного и того же параметра генеральной совокупности. Та оценка, которая имеет наименьшую дисперсию, называется эффективной.
Полученная из выборки объема n точечная оценка dn параметра D генеральной совокупности называетсясостоятельной, если она сходится по вероятности к D. Это означает, что для любых положительных чисел e иg найдется такое число neg , что для всех чисел n, удовлетворяющих неравенству n > neg выполняется условие . и являются несмещёнными, состоятельными и эффективными оценками величин Mxи Dx.
Интервальные оценки.
Точечные оценки параметров генеральной совокупности могут быть приняты в качестве ориентировочных, первоначальных результатов обработки выборочных данных. Их недостаток заключается в том, что неизвестно, с какой точностью оценивается параметр. Если для выборок большого объема точность обычно бывает достаточной (при условии несмещенности, эффективности и состоятельности оценок), то для выборок небольшого объема вопрос точности оценок становится очень важным.
Введем понятие интервальной оценки неизвестного параметра генеральной совокупности (или случайной величины x, определенной на множестве объектов этой генеральной совокупности). Обозначим этот параметр черезD. По сделанной выборке по определенным правилам найдем числа D1 и D2, так чтобы выполнялось условие:
P(D1<D<D2) =P (DÎ(D1; D2)) = g
Числа D1 и D2 называются доверительными границами, интервал (D1, D2) — доверительным интервалом для параметра D. Число g называется доверительной вероятностью или надежностью сделанной оценки.
Сначала задается надежность. Обычно ее выбирают равной 0,95, 0,99 или 0,999. Тогда вероятность того, что интересующий нас параметр попал в интервал (D1, D2) достаточно высока. Число (D1 + D2) / 2 – середина доверительного интервала – будет давать значение параметра D с точностью (D2 – D1) / 2, которая представляет собой половину длины доверительного интервала.
Границы D1 и D2 определяются из выборочных данных и являются функциями от случайных величин x1, x2,...,xn, а следовательно – сами случайные величины. Отсюда – доверительный интервал (D1, D2) тоже случаен. Он может покрывать параметр Dили нет. Именно в таком смысле нужно понимать случайное событие, заключающееся в том, что доверительный интервал покрывает число D.
№ 11Полиго́нчасто́т (в математической статистике) — один из способов графического представления плотности вероятности случайной величины. Представляет собой ломаную, соединяющую точки, соответствующие срединным значениям интервалов группировки и частотам этих интервалов.
Полигон частот образуется ломаной линией, соединяющей точки, соответствующие срединным значениям интервалов группировки и частотам этих интервалов, срединные значения откладываются по оси х, а частоты – по оси у.
Из сравнения двух рассмотренных способов графического представления эмпирических распределений следует, что для получения полигона частот из построенной гистограммы нужно середины вершин прямоугольников, образующих гистограмму, соединить отрезками прямых. Пример полигона частот представлен на рис. 2.2.
Рис. 2.2. Полигон частот
Полигон частот используется для представления распределений как непрерывных, так и дискретных признаков. В случае непрерывного распределения полигон частот является более предпочтительным способом графического представления, чем гистограмма, если график эмпирического распределения описывается плавной зависимостью.