Определение ставок и вычисление процентов
СБОРНИК ЗАДАЧ ПО КУРСУ МАТЕМАТИЧЕСКАЯ ЭКОНОМИКА
Магнитогорск
2005
Сборник задач по курсу «Математическая экономика». — Магнитогорск: МаГУ, 2005. – 184 с.
В сборнике дан обзор ключевых категорий и положений, используемых в курсе «Математическая экономика». Представлены примеры решения типовых задач, приведены вопросы для самопроверки по изучаемому материалу. Материалы пособия могут быть использованы в курсах «Финансовая математика», «Математические методы финансового анализа», «Финансовый менеджмент», «Финансовый анализ» и др.
Работа ориентирована на преподавателей, аспирантов и студентов очного и заочного отделения, научным и практическим работникам, специализирующимся в области управления финансами и инвестиционными проектами, применения математических методов и моделей в исследования экономических систем и явлений.
Составители. Г.Н. Чусавитина,
В.Б. Лапшина.
ã Чусавитина Г.Н., Лапшина В.Б. 2005
ã Магнитогорский государственный
университет, 2005
Оглавление
ВВЕДЕНИЕ 4
Глава 1 ПРОСТЫЕ ПРОЦЕНТЫ 6
1.1. Определение ставок и вычисление процентов 6
1.2. Простая процентная ставка 9
1.3. Простая учетная ставка 20
1.4. Погашение кредита и амортизационные отчисления 31
1.5. Вычисление средних значений 39
1.6. Валютные расчеты 47
1.7. Налог на прибыль 51
1.8. Инфляция 54
1.9. Замена и консолидация платежей 63
Глава 2 СЛОЖНЫЕ ПРОЦЕНТЫ 71
2.1. Сложная процентная ставка 71
2.2. Сложная учетная ставка 89
2.3. Непрерывная ставка 99
2.4. Эквивалентность ставок 105
2.5. Инфляция и начисление сложных и непрерывных процентов 110
2.6. Замена платежей и сроков их выплат 122
Глава 3 АННУИТЕТЫ 129
3.1. Постоянный аннуитет 129
3.2. Непрерывный и переменный аннуитеты 145
3.3. Оценка аннуитета с периодом больше года 153
ПРИЛОЖЕНИЯ 156
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА 180
ВВЕДЕНИЕ
«Математическая экономика» — это название дисциплины, придуманное математиками. Экономистам больше нравится другое название –«Экономико-математические модели и методы». В учебных программах и стандартах экономических факультетов часто встречается именно такое название. На наш взгляд, эти два названия одинаково точно передают внутреннее содержание предмета, где гармонично сочетаются экономические и математические аспекты. К сожалению, на практике часто программа курса ЭММиМ целиком составляется из отдельных разделов "Исследования операций и математического программирования", которые, во-первых, уже были пройдены до этого курса, во-вторых, содержат математические модели принятия решений и оптимизации, а не экономико-математические модели как таковые.
Математическая экономика — это наука, которая использует математический аппарат в качестве метода исследования экономических систем и явлений.
Таким образом, объектом изучения (или предметной областью) математической экономики является экономика — как часть бытия или часть обширной области человеческой деятельности.
Как и другие науки, изучающие экономику в целом или ее составные части, математическая экономика пользуется определенной методологией и имеет свою специфику. Специфика математической экономики, ее методологическая особенность заключается в том, что она изучает не сами экономические объекты и явления как таковые, а их математические модели. Ее цель— получение объективной экономической информации и выработка имеющих важное практическое значение рекомендаций. Формально математическую экономику можно отнести как к экономической, так и к математической наукам. В первом случае ее следует понимать как тот раздел экономики, который изучает количественные и качественные категории, а также поведенческие аспекты экономических субъектов. Считая же математическую экономику одним из направлений математики, можно отнести ее к тем разделам прикладной математики, которые занимаются оптимизационными задачами и задачами принятия решения
По своей природе экономика — самая близкая к математике социальная наука. Уже в определении самого понятия экономики, ее главных задач можно увидеть математические понятия и терминологию.
Действительно, экономика — это общественная наука об использовании ограниченных ресурсов с целью максимального удовлетворения неограниченных материальных потребностей населения. Центральные проблемы экономической науки — рациональное ведение хозяйства, оптимальное распределение ограниченных ресурсов, изучение экономических механизмов управления, разработка методов экономических расчетов — по существу являются задачами, решаемыми в рамках математических наук. Количественные и качественные методы математики являются наилучшим вспомогательным аппаратом для получения ответов на основные вопросы экономики:
· что должно производиться (т. е. какие товары и услуги и в каком количестве надо производить)?
· как будут производиться товары (т. е. кем и с помощью каких ресурсов и какой технологии)?
· для кого предназначены эти товары (т.е. кем и как будут потребляться эти товары)?
Наконец, задача экономической теории, связанная с приведением в систему, истолкованием и обобщением поведения участников экономики в процессе производства, обмена и потребления, восходит к математическим проблемам оптимизации и принятия решения.
С учетом сказанного выше можно говорить о следующих основных задачах, стоящих перед математической экономикой:
· разработка математических моделей экономических объектов, систем и явлений (общих и частных задач экономики при различных условиях, предпосылках и на различных уровнях);
· изучение поведения участников экономики (условий существования оптимальных решений и их признаков, а также методов их вычисления в моделях потребления, фирмы, совершенной и несовершенной конкуренции и др.);
· изучение описательных моделей экономики (модели планирования, "затраты - выпуск", расширяющейся экономики, экономики благосостояния и роста и др.);
· анализ экономических величин и статистических данных (эластичности, средних и предельных величин, регрессионный и корреляционный анализ и прогнозирование экономических факторов и показателей).
В сборнике дан обзор ключевых категорий и положений, используемых в курсе «Математическая экономика». Представлены примеры решения типовых задач, приведены вопросы для самопроверки по изучаемому материалу. Материалы пособия могут быть использованы в курсах «Финансовая математика», «Математические методы финансового анализа», «Финансовый менеджмент», «Финансовый анализ» и др.
Работа ориентирована на преподавателей, аспирантов и студентов очного и заочного отделения, научным и практическим работникам , специализирующимся в области управления финансами и инвестиционными проектами, применения математических методов и моделей в исследования экономических систем и явлений.
Глава 1 ПРОСТЫЕ ПРОЦЕНТЫ
Определение ставок и вычисление процентов
Основные положения
· Денежные ресурсы, участвующие в финансовой операции, имеют временную ценность: одна и та же сумма денег неравноценна в разные периоды. Учет временного фактора в финансовых операциях осуществляется путем начисления процентов или дисконтирования.
· Для сопоставления в пространственно-временном аспекте результатов финансовой операции используют показатель, называемый ставкой и определяемый отношением процентных денег, уплаченных (полученных) за единицу времени (обычно за год), к некоторому базовому капиталу. Это отношение выражается в десятичных дробях или в процентах.
· Процентная ставка определяется отношением процентных денег, уплаченных (полученных) за единицу времени (обычно за год), к величине исходного капитала.
· Учетная ставка определяется отношением процентных денег, уплаченных (полученных) за единицу времени (обычно за год), к ожидаемой к получению (возвращаемой) сумме денежных средств.
· Эффективность любой финансовой операции может быть охарактеризована ставкой.
· Удобной и наглядной характеристикой (особенно при оценке вклада) является индекс роста суммы за данный период, показывающий, во сколько раз выросла величина капитала по отношению к величине капитала в конце предыдущего периода.
· Процесс, в котором заданы исходная сумма и ставка, в финансовых вычислениях называется процессом наращения, искомая величина называется наращенной суммой, а ставка - ставкой наращения.
· Процесс, в котором заданы ожидаемая в будущем к получению (возвращаемая) сумма и ставка, называется процессом дисконтирования, искомая величина называется приведенной суммой, а ставка - ставкой дисконтирования.
· В качестве ставки наращения или дисконтирования может выступать как процентная, так и учетная ставка.
· Число, равное сумме начального числа и начисленных на него процентов, называется наращенным числом. Проценты по отношению к наращенному числу называются процентами "на 100", а проценты по отношению к начальному числу называются процентами "со 100". Проценты "на 100" находят в задачах следующего типа: даны ставка процента и сумма двух слагаемых, одно из которых представляет собой проценты "со 100" другого; требуется найти одно из слагаемых.
· Число, равное разности между начальным числом и начисленными на него процентами, называется уменьшенным числом. Проценты по отношению к уменьшенному числу называются процентами "во 100". Проценты "во 100" находят в задачах следующего типа: даны ставка процента и разность двух слагаемых, одно из которых (вычитаемое) представляет собой проценты "со 100" другого; требуется найти одно из слагаемых.