Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания.

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru у Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru + ct - Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru ,

где Yt – дискретная переменная – стартовый капитал страховщика, с – страховая премия, т.е. скорость, с кот в ст.комп. поступают средства, t – время,

N(t) – случайная величина, кол-во исков

N= Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru , сумма индикаторов событий, EN = np = ν

N(t) – представляет собой пуассоновский процесс, его значениями явл. кол-во предъявл.исков.

P(N(t) = x) = [(λt)^x/x!]*e Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru - модель потока событий.

N(t)

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

T

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru - среднее время между 2 скачками, чем меньше T, тем интенсивней поток

T - время между событиями, событие значит предъявление иска и возмещение компанией опред. ущерба – каждая ступень имеет высоту Zt,

EZt = Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru - средняя величина ступеньки

Если ущерб каждый раз разный, ступеньки имеют разные высоты, то имеет место составной пуасон.процесс. (верхний рисунок)

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

x=0,1….

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru генерирует поток событий

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

t Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru - время между событиями. При t=1 модель становится однопериодной. Так же потоки являются аппаратами массового обслуживания.

Простейший пуассоновский процесс (нижний рисунок) – процесс с независимыми приращениями, обладает свойствами:

1) стационарность, т.е. вероятность появления х событий на интервале (t; t+ Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru ) зависит от Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru -ширины интервала и от х, но не от t. Пара (х; Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru ) определяет интенсивность событий.

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru постоянна, потому поток стационарен

P ( x(t;t+τ)=n ) = Pn(τ)

2) отсутствие последействия – предыстория не влияет на вероятности появления событий в будущем. Только начальное состояние влияет на будущее, прошлое не имеет значения, его нет.

x(t(i);t(i+1)) и x(t(i-1),t(i)) независимы

3) ординарность, т.е. вероятность появления в некотором «малом» интервале времени более чем одного события почти равна 0. Эта вероятность на порядок меньше, чем вероятность вообще ни одного события или одного события.

P ( N(t;t+∆t)≥2 ) = 0(∆t)

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru - среднее время между событиями, малость означает , что Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru T <<1

Следствием из этих св-в является то, что интервалы времени между событиями распределены экспоненциально, Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru = t(i+1)-t(i) распред экспоненциально

Проверка св-ва 3

1) Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Разложим е в ряд Тейлора и будем считать, что Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru , т.е Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru -величина маленькая.

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

А если Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru , то Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru является величиной второго порядка малости.

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru означает, что интервал Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru , где T = 1/λ

Проверим следствие.

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Т.к Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru от t не зависит, то можно положить, что t=0

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Это означает, что ф-я распределения Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru , т.е τ – интервалы врем.между событиями - распред.экспоненциально.

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

На рис. - кривая Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru и мат.ож. Т

Вероятностные характеристики сложного пуассон. процесса

Составной Пуассоновский процесс N(t)

Zi =Ii Si Ri

n – число договоров, EIi = p , сл-но, EN = np

Обозначения

ERi = Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

DRi = Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

EN = ν

DN = Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Вывод формулы мат.ож.

Z= Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru , N=1,2,3……, Zn – независимые друг от друга, одинаково распред.

Т.к. Zi = Ii*Si*Ri, Ii переводится в N => Zi = Si*Ri, Si=1, => Zi = Ri => Z = Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Если Rn = R, то Z = R*N (неправильно с точки зрения распределений, но в этом случае это вып)

Надо найти EZ, DZ

Если бы Z=NR, то как неоднородный портфель (???)

EZ= Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru * Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru = n*p*μ = ν*μ

Если Z≠NR, действуя строго, получим EZ= Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru ) * p(N=n)

= Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru = =E Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru R Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru = ER EN

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

EN

DZ = DN*DR+(E²N)*DR+(E²R)*DN = τ²σ²+ν²σ²+μ²τ² = νσ²+μ²τ²

10. Модель коллективного риска (стохастическое уравнение динамики страховых резервов). Вероятность разорения страховой компании как функция начального капитала и рисковой надбавки. Случай экспоненциального распределения индивидуальных исков. Общий случай (неравенство Лундберга-Крамера).

Модель коллективного риска имеют следующие допущения:

1) Процесс поступления рисков растянут во времени. У нее есть динамика, при этом не рассматривается вероятность индивидуальных рисков (нет n и p и количества договоров).

2) Размеры выплат друг от друга не зависят

3) В страховую компанию поступает непрерывно во времени приток договоров с некоторой интенсивностью.

Рассматривается динамика резервов. Ставится задача: как параметры договоров (величина страховой премии, зависящей от страхового тарифа) и капитала (стартовая величина) влияют на вероятность разорения компании (то есть момент, когда резервы станут <0)

Yt – дискретная переменная – стартовый капитал страховщика

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru у Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru + ct - Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

с – страховая премия, т.е. скорость, с кот в ст.комп. поступают средства, t – время

N(t) – случайная величина, кол-во исков

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru интенсивность, скорость

E(ct)=EZ= Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru , тогда C= Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru , С - страховая премия, тариф.

реально учит риск.надбавка C= Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru *(1+ Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru ), из Т = Т0 + Тr

Тогда Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru вероятность разорения при стартовом капитале Y0

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru =p(Yt Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Если Y0<0 , то Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru =1

Величину Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru можно получить, решая интегрально дифференциальное уравнение.

Если Z распределяется по экспоненциальному закону F(Z) = P(Zt Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru Z) = 1- e Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru (что наиболее приближено к реальности), то имеется решение:

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Если y Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru =0 , то Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

0<η<1, и чем больше риск.надбавка, тем меньше вер-ть разорения.

Небобх сравнивать Y0 с Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru -средние суммы, на которые мы страхуем, т.е рассм. (Y0/ Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru ) - кратность

В общем случае – если Z распред произвольно - имеет место неравенство Крамера-Лундберга

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru ,

где R -положительный корень интегрального уравнения

Простейший (пуассоновский) процесс, его свойства, следствия из них. Сложнопуассоновский (составной пуассоновский) процесс, его вероятностные характеристики. Вывод формулы математического ожидания. - student2.ru

Наши рекомендации