Глава 7. ПЕРЕОТКРЫТИЕ ВРЕМЕНИ 1. Смещение акцента 2 страница

Реальный урок, который мы можем извлечь из принципа дополнительности (урок, важный и для других областей знания), состоит в констатации богатства и разнообразия реальности, превосходящей изобразительные возможности любого отдельно взятого языка, любой отдельно взятой логической структуры. Каждый язык способен выразить лишь какую-то часть реальности. Например, ни одно направление в исполнительском искусстве и музыкальной композиции от Баха до Шёнберга не исчерпывает всей музыки.

Мы стремились всячески подчеркнуть важность введения операторов, ибо они позволили нам достаточно убедительно показать: реальность, изучаемая физикой, есть не что иное, как конструкция нашего разума, а не только данность. Необходимо проводить различие между абстрактным понятием координаты или импульса, представляемых математически операторами, и их численной реализацией, достигаемой посредством эксперимента. Одна из причин противопоставления «двух культур», по-видимому, кроется в убеждении, что литература соответствует некоторой концептуализации реальности, чему-то вымышленному, в то время как наука выражает объективную реальность. Квантовая механика учит нас, что ситуация не столь проста. Существенный элемент концептуализации подразумевается на всех уровнях реальности.

5. Временная эволюция квантовых систем
Перейдем теперь к рассмотрению временной эволюции квантовых систем. В квантовой механике, как и в классической, основную роль играет гамильтониан. Как мы уже знаем, в квантовой механике гамильтониан-функция заменяется гамильтониан-оператором Hоп. Этот оператор энергии выполняет весьма важную миссию: с одной стороны, его собственные значения соответствуют энергетическим уровням, с другой стороны, как и в классической механике, гамильтониан определяет временную эволюцию системы. В квантовой механике аналогом канонических уравнений классической механики является уравнение Шредингера, которое описывает временную эволюцию функции ?, задающей квантовое состояние системы как результат действия на волновую функцию ? гамильтониана Hоп (существуют и другие формулировки квантовой механики, но мы не будем приводить их здесь). Термин волновая функция выбран для того, чтобы еще раз подчеркнуть столь важный для всей квантовой физики дуализм волна — частица. Напомним, что ? — амплитуда волны, эволюционирующей в соответствии с зависящим от типа частицы уравнением, задаваемым гамильтонианом. Как и канонические уравнения классической физики, уравнение Шредингера описывает обратимую и детерминистическую эволюцию. Обратимое изменение волновой функции в квантовой механике соответствует обратимому движению вдоль траектории. Если волновая функция в данный момент времени известна, то уравнение Шредингера позволяет вычислить значение, принимаемое ею в любой другой момент времени как в прошлом, так и в будущем. С этой точки зрения ситуация в квантовой механике вполне аналогична ситуации в классической механике. Столь тесная аналогия объясняется тем, что время не входит в соотношения неопределенности в квантовой механике. Время в квантовой механике — число, а не оператор, тогда как в соотношения неопределенности Гейзенберга могут входить только операторы.

Квантовая механика использует лишь половину переменных классической механики, поэтому классический детерминизм становится неприменимым, и в квантовой физике центральное место занимают статистические соображения. В соприкосновение с ними мы вступаем через интенсивность волны |?|^2 (квадрат амплитуды).

Стандартная статистическая интерпретация квантовой механики сводится к следующему. Рассмотрим собственные функции какого-нибудь оператора (например, оператора энергии Hоп) и соответствующие им собственные значения. В общем случае волновая функция ? не является собственной функцией оператора энергии, но представима в вмде суперпозиции собственных функций. Вес («важность»), с которым каждая собственная функция входит в эту суперпозицию, позволяет вычислять вероятность появления соответствующего собственного значения.

Здесь мы снова сталкиваемся с весьма важным отклонением от классической теории: предсказуемы только вероятности, а не отдельные события. Второй раз за историю физики вероятности были привлечены для объяснения некоторых фундаментальных свойств природы. Впервые вероятности использовал Больцман в своей интерпретации энтропии. Однако предложенная Больцманом интерпретация отнюдь не исключала субъективную точку зрения, согласно которой «только» ограниченность наших знаний перед лицом сложности системы служит препятствием на пути к полному описанию. (Как мы увидим в дальнейшем, это заблуждение ныне вполне преодолимо.) Как и во времена Больцмана, использование вероятностей в квантовой механике оказалось неприемлемым для многих физиков (в том числе и для Эйнштейна), стремившихся к «полному» детерминистическому описанию. Как и в случае необратимости, ссылка на неполноту и ограниченность нашего знания, казалось, позволяла найти выход из создавшегося затруднения: ответственность за статистический характер квантовомеханического описания так же, как некогда за необратимость, возлагалась на нашу неспособность охватить все детали поведения сложной системы.

И здесь мы снова подошли к проблеме скрытых переменных. Однако, как уже говорилось, из-за отсутствия сколько-нибудь убедительного экспериментального подтверждения от идеи введения скрытых переменных пришлось отказаться. Фундаментальная роль вероятностей в квантовой механике постепенно получила всеобщее признание.

Существует лишь один случай, когда уравнение Шредингера приводит к детерминистическому предсказанию: так бывает, когда волновая функция ?, представимая, вообще говоря, в виде суперпозиции собственных функций, сводится к одной-единственной функции. В частности, при идеальном процессе измерения система может быть приготовлена таким образом, чтобы результат данного измерения был предсказуем. Тогда систему будет описывать единственная собственная функция и поведение системы станет достоверно предсказуемым: она будет находиться в собственном состоянии, соответствующем результату измерения.

Процесс измерения в квантовой механике имеет особое значение, и поныне вызывающее значительный интерес. Предположим, что мы начали с волновой функции, которая является в действительности суперпозицией собственных функций. В результате процесса измерения этот единственный набор систем, представимых одной и той же волновой функцией, заменяется набором волновых функций, соответствующих различным собственным значениям, которые могут быть измерены. На языке квантовой механики это означает, что измерение переводит одну волновую функцию («чистое» состояние) в смесь («смешанное» состояние).

Бор и Розенфельд[10] неоднократно отмечали, что каждое измерение содержит элемент необратимости, т. о. апеллировали к необратимым явлениям (таким, как химические процессы), соответствующим записи, или регистрации, данных. Запись сопровождается усилением, в результате которого микроскопическое явление производит эффект на макроскопическом уровне, т. е. на том самом уровне, на котором мы считываем показания измерительных приборов. Таким образом, измерение предполагает необратимость.

В определенном смысле это утверждение было справедливо и в классической физике. Но проблема необратимого характера измерения в квантовой механике приобрела большую остроту, поскольку затрагивает вопросы на уровне формулировки квантовой механики.

Обычный подход к этой проблеме сводится к утверждению о том, что у квантовой механики нет иного выбора, как постулировать сосуществование двух первичных и не сводимых друг к другу процессов: обратимой и непрерывной эволюции, описываемой уравнением Шредингера, и необратимой и дискретной редукции волновой функции к одной из входящих в нее собственных функций в момент измерения. Возникает парадокс: обратимое уравнение Шредингера может быть проверено лишь с помощью необратимых измерений, которые это уравнение, по определению, не может описывать. Следовательно, квантовая механика не может быть замкнутой теорией.

Столкнувшись со столь большими трудностями, некоторые физики в очередной раз попытались искать убежище в субъективизме, утверждая, что мы сами (наше измерение и даже, по мнению некоторых, наш разум) определяем эволюцию системы, нарушающую естественную «объективную» обратимость11. Другие физики пришли к выводу, что уравнение Шредингера «не полно» и в него необходимо ввести новые члены, которые бы учитывали необратимость измерения. Предлагались и менее правдоподобные решения проблемы, такие, как гипотеза многих миров Эверетта (см. книгу д’Эспаньи, указанную в прим. 8). Однако для нас сосуществование в квантовой механике обратимости и необратимости свидетельствует о том, что классическая идеализация, описывающая мир как замкнутую систему, на микроскопическом уровне невозможна. Именно это имел в виду Бор, когда заметил, что язык, используемый нами для описания квантовой системы, неотделим от макроскопических понятий, описывающих функционирование наших измерительных приборов. Уравнение Шредингера описывает не какой-то особый уровень реальности. В его основе лежит скорее предположение о существовании макроскопического мира, которому принадлежим мы сами.

Таким образом, проблема измерения в квантовой механике является аспектом одной из проблем, которым посвящена наша книга, — взаимосвязи между простым миром, описываемым гамильтоновыми траекториями и уравнением Шредингера, и сложным макроскопическим миром необратимых процессов.

В гл. 9 мы увидим, что необратимость входит в классическую физику, когда идеализация, в основе которой заложено понятие траектории, становится неадекватной. Проблема измерения в квантовой механике допускает решение того же типа12. Действительно, волновая функция представляет максимум того, что нам известно о квантовой системе. Как в классической физике, объект этого максимального знания удовлетворяет обратимому эволюционному уравнению. В обоих случаях необратимость возникает, когда идеальный объект, соответствующий максимальному знанию, подлежит замене менее идеализированными понятиями. Но когда это происходит? Наступление такого момента зависит от физических механизмов необратимости, к которым мы еще вернемся в гл. 9. Но предварительно нам необходимо резюмировать некоторые другие особенности возрождения современной науки.

6. Неравновесная Вселенная
Две научные революции, описанные в этой главе, начались с попыток включить в общую схему классической механики универсальные постоянные с и h. Это повлекло за собой далеко идущие последствия, частично описанные выше. Вместе с том нельзя не отметить, что другие аспекты теории относительности и квантовой механики свидетельствуют об их принадлежности к мировоззрению, лежащему в основе ньютоновской механики. В особенности это относится к роли и значению времени. Коль скоро в квантовой механике волновая функция известна в нулевой момент времени, ее значение ? (t) определено в любой момент времени t, как в прошлом, так и в будущем. Аналогичным образом в теории относительности статический, геометрический характер времени часто подчеркивается использованием четырехмерных обозначений (трех пространственных измерений и одного временного). Как точно заметил Минковский в 1908 г., «отныне пространство само по себе и время само по себе должны обратиться в фикции и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность»13.

Но за последние пятьдесят лет ситуация резко изменилась. Квантовая теория стала основным средством при рассмотрении элементарных частиц и их превращений. Описание фантастического многообразия элементарных частиц, обнаруженных за последние годы, увело бы нас далеко в сторону от нашей основной темы.

Напомним лишь, что, опираясь на квантовую механику и теорию относительности, Дирак предсказал существование античастиц: каждой частице с массой m и зарядом е соответствует античастица с массой m и зарядом противоположного знака. Предвидение Дирака подтвердилось: к настоящему времени на ускорителях высоких энергий получены позитроны (античастицы электронов), антипротоны. Антиматерия стала обычным предметом исследования в физике элементарных частиц. При столкновении частицы и античастицы аннигилируют с выделением фотонов — безмассовых частиц света. Уравнения квантовой теории симметричны относительно замены частицы — античастицы или, точнее, относительно более слабого требования, известного под названием СРТ-симметрии. Несмотря на СРТ-симметрию, между частицами и античастицами в окружающем нас мире существует замечательная дисимметрия. Мы состоим из частиц (электронов, протонов). Что же касается античастиц, то они остаются своего рода лабораторными «раритетами». Если бы частицы и античастицы сосуществовали в равных количествах, то все вещество аннигилировало бы. Имеются веские основания полагать, что в нашей Галактике антиматерия не существует, но не исключено, что она существует в других галактиках. Можно представить себе, что во Вселенной действует некий механизм, разделяющий частицы и античастицы и «прячущий» последние где-то далеко от нас. Однако более вероятно, что мы живем в несимметричной Вселенной, в которой материя преобладает над антиматерией.

Как такое возможно? Модель, объясняющая наблюдаемую ситуацию, была предложена А. Д. Сахаровым в 1966 г.14 В настоящее время проблема отсутствия симметрии в распределении материи и антиматерии усиленно разрабатывается. Существенным элементом современного подхода является утверждение о том, что в момент образования материи Вселенная должна была находиться в неравновесных условиях, поскольку в состоянии равновесия из закона действия масс, о котором шла речь в гл. 5, следовало бы количественное равенство материи и антиматерии.

В этой связи мы хотели бы подчеркнуть, что неравновесность обретает ныне новое, космологическое измерение. Без неравновесности и связанных с ней необратимых процессов Вселенная имела бы совершенно иную структуру. Материя нигде не встречалась бы в заметных количествах. Повсюду наблюдались бы лишь флуктуации, приводящие к локальным избыткам то материи, то антиматерии.

Из механистической теории, модифицированной с учетом существования универсальной постоянной h, квантовая теория превратилась в теорию взаимопревращений элементарных частиц. В ходе предпринятых в последнее время попыток построить единую теорию элементарных частиц высказывалась гипотеза о том, что все элементарные частицы материи, включая протон, нестабильны (правда, время жизни протона достигает коллосальной величины — 1030 лет). Механика, наука о движении, вместо того чтобы соответствовать

фундаментальному уровню описания, низводится до роли приближения, годного лишь вследствие огромного времени жизни таких элементарных частиц, как протоны.

Аналогичным трансформациям подверглась и теория относительности. Как мы уже упоминали, теория относительности начинала как геометрическая теория, сильно акцентировавшая свой безвременной характер. Ныне теория относительности является основным инструментом исследования тепловой истории Вселенной, позволяющим раскрыть те механизмы, которые привели к наблюдаемой ныне структуре Вселенной. Тем самым обрела новое звучание проблема времени, необратимости. Из области инженерии, прикладной химии, где она была сформулирована впервые, проблема необратимости распространилась на всю физику — от теории элементарных частиц до космологии.

Если к оценке квантовой механики подходить, имея в виду главную тему нашей книги, то основной заслугой ее следует считать введение вероятности в физику микромира. Вероятность, о которой идет речь, не следует путать со стохастическими процессами, описывающими химические реакции (о них мы рассказали в гл. 5). В квантовой механике волновая функция эволюционирует во времени детерминистическим образом, за исключением тех моментов, когда над квантовой системой производится измерение.

Мы видим, что за пятьдесят лет, прошедших со времени создания квантовой механики, исследования неравновесных процессов показали, что флуктуация, стохастические элементы важны даже в микроскопическом масштабе. На страницах нашей книги мы уже неоднократно говорили о том, что продолжающееся ныне концептуальное перевооружение физики ведет от детерминистических обратимых процессов к процессам стохастическим и необратимым. Мы считаем, что в этом процессе квантовая механика занимает своего рода промежуточную позицию: она вводит вероятность, но не необратимость. Мы ожидаем (и в гл. 9 будут приведены некоторые основания для этого), что следующим шагом будет введение фундаментальной необратимости на микроскопическом уровне. В отличие от попыток восстановить классическую ортодоксальность с помощью скрытых переменных мы считаем, что необходимо еще дальше отойти от детерминистических описаний и принять статистическое, стохастическое описание.

Глава 8. СТОЛКНОВЕНИЕ ТЕОРИЙ
1. Вероятность и необратимость
Мы увидим, что почти всюду физик очистил свою науку от использования одностороннего времени, как бы сознавая, что эта идея привносит антропоморфный элемент, чуждый идеалам физики. Тем не менее в нескольких важных случаях одностороннее время и односторонняя причинность возникали, словно по волшебству, но, как будет показано, всякий раз в поддержку какой-нибудь ложной теории.

Г. Н. Льюис[1]

Закон монотонного возрастания энтропии — второе начало термодинамики — занимает, как мне кажется, высшее положение среди законов природы. Если кто-нибудь заметит вам, что ваша любимая теория Вселенной не согласуется с уравнениями Максвелла, то тем хуже для уравнений Максвелла. Если окажется, что ваша теория противоречит наблюдениям,- ну что же, и экспериментаторам случается ошибаться. Но если окажется, что ваша теория противоречит второму началу термодинамики, то у вас не останется ни малейшей надежды: ваша теория обречена на бесславный конец.

А. С. Эддингтон[2]

Предложенная Клаузиусом формулировка второго начала термодинамики сделала очевидным конфликт между термодинамикой и динамикой. Вряд ли найдется в физике другой такой вопрос, который бы обсуждался чаще и активнее, чем соотношение между термодинамикой и динамикой. Даже теперь, через сто пятьдесят лет после Клаузиуса, этот вопрос продолжает вызывать сильные эмоции. Никто не остается нейтральным в конфликте, затрагивающем самый смысл реальности и времени. Следует ли нам отказаться от динамики, матери современного естествознания, в пользу какого-нибудь варианта термодинамики? «Энергетисты», пользовавшиеся большим влиянием к конце XIX в., считали отказ oт динамики необходимым. Нельзя ли как-нибудь «спасти» динамику, сохранить второе начало и вместе с тем не нарушить величественное здание, воздвигнутое Ньютоном и его последователями? Какую роль может играть энтропия в мире, описываемом динамикой?

Мы уже упоминали об ответе на этот вопрос, который был дан Больцманом. Знаменитое соотношение Больцмана S KlnP связывает энтропию и вероятность: энтропия возрастает потому, что возрастает вероятность. Сразу же подчеркнем, что в этом плане второе начало имело бы огромное практическое значение, но не было бы столь фундаментальным. В своей превосходной книге «Этот правый, левый мир» Мартин Гарднер пишет: «Некоторые явления идут в одну сторону не потому, что не могут идти в другую, а потому, что их протекание в обратом направлении весьма маловероятно»3. Усовершенствуя наши возможности измерять все менее и менее вероятные события, мы могли бы достичь такого положения, когда второе начало играло бы сколь угодно малую роль. Такой точки зрения придерживаются некоторые современные физики. Но Макс Планк считал иначе:

«Нелепо было бы предполагать, что справедливость второго начала каким бы ни было образом зависит от большего или меньшего совершенства физиков и химиков в наблюдательном или экспериментальном искусстве. Содержанию второго начала нет дела до экспериментирования, оно гласит in nuce (в самом главном): «В природе существует величина, которая при всех изменениях, происходящих в природе, изменяется в одном и том же направлении». Выраженная в таком общем виде, эта теорема или верна, или не верна; но она остается тем, что она есть, независимо от того, существуют ли на Земле мыслящие и измеряющие существа и если они существуют, то умеют ли они контролировать подробности физических или химических процессов на один, два или сто десятичных знаков точнее, чем в настоящее время. Пределы для этого начала, если только они действительно существуют, необходимо должны находиться в той же области, в которой находится и его содержание, — в наблюдаемой природе, а не в наблюдающих людях. Обстоятельства нисколько не изменяются от того, что для вывода начала мы пользуемся человеческим опытом; для нас это вообще единственный путь для исследования законов природы»4.

Взгляды Планка не получили особого распространения среди его современников. Как уже отмечалось, большинство физиков склонны были считать второе начало следствием приближенного описания, вторжения субъективных взглядов в точный мир физики. Эту точку зрения отражает, например, знаменитое высказывание Борна: «Необратимость есть результат вхождения элемента нашего незнания в основные законы физики»5.

В настоящей главе мы намереваемся осветить некоторые основные этапы в развитии интерпретации второго начала. Прежде всего необходимо понять, почему эта проблема оказалась столь трудной. В гл. 9 мы изложим новый подход, из которого, как нам хотелось бы надеяться, читателю станут ясны и принципиальная новизна, и объективное значение второго начала. Вывод, к которому мы придем, совпадает с точкой зрения Планка. Мы покажем, что второе начало, отнюдь не разрушая величественное здание динамики, дополняет его существенно новым элементом.

Прежде всего необходимо пояснить установленную Больцманом связь между вероятностью и энтропией. Воспользуемся для этого моделью урн, предложенной П. и Т. Эренфестами6. Рассмотрим N предметов (например, шаров), распределенных между двумя контейнерами (урнами) А и В. Предположим, что через одинаковые промежутки времени (например, через секунду) мы извлекаем наугад шар либо из урны А, либо из урны В и перекладываем его в другую урну. Пусть через п шагов в урне А находится k шаров, а в урне В — остальные N-k шаров. Тогда на (n+1)-ом шаге в урне A может оказаться либо k-1, либо k+1 шаров и вероятность перехода равна k/N для kRk-1 и 1-k/N для kRk+1. Предположим, что мы продолжаем извлекать шары наугад из урн и перекладывать их в другую урну. Мы ожидаем, что в результате перекладывания шаров установится наиболее вероятное их распределение по урнам в смысле Больцмана. Если число шаров N достаточно велико, то шары с наибольшей вероятностью распределятся между урнами А и В поровну: в каждой урне по N/2 шаров. В этом нетрудно убедиться, проделав соответствующие вычисления или выполнив экспериментальную проверку.

Модель Эренфестов — простой пример марковского процесса (или цепи Маркова), названного так в честь выдающегося русского математика академика А. А. Маркова, одним из первых исследовавшего такие процессы (Пуанкаре был вторым). Кратко отличительную особенность марковских процессов можно сформулировать следующим образом: вероятности переходов однозначно определены и не зависят от предыстории системы. Цепи Маркова обладают замечательным свойством: их можно описать с помощью энтропии. Пусть P(k) — вероятность найти k шаров в урне A. Вероятности Р(К) можно сопоставить H-функцию, свойства которой в точности совпадают со свойствами энтропии, рассмотренной нами в гл. 4. На рис. 25 показано, как H-функция изменяется во времени. Мы видим, что она изменяется монотонно, как и энтропия изолированной системы.

Правда, H-функция убывает, а энтропия S возрастает, но так происходит «по определению»: H играет роль — S.

Математический смысл H-функции заслуживает того, чтобы рассмотреть его более подробно: H-функция служит мерой отклонения вероятностей в данный момент времени от вероятностей в равновесном состоянии (когда число шаров в каждой урне равно N/2). Рассуждения, используемые в модели урн Эренфестов, допускают обобщение. Рассмотрим разбиение квадрата, т. е. разделим квадрат на некоторое число непересекающихся областей. Нас будет интересовать распределение частиц по квадрату. Пусть Р(k, t) — вероятность найти частицу в области k (в момент времени t), а Рравн(k) — вероятность найти частицу в области k в равновесных условиях. Предполагается, что, как и в модели урн, вероятности переходов существуют и однозначно определены. По определению, H-функция задается выражением

Заметим, что в правую часть входит отношение P(k,t)/Pравн(k). Предположим, что мы разделили квадрат на восемь непересекающихся клеток и Рравн(k)=1/8. Пусть в момент времени t все частицы находятся в первой клетке. Тогда P(1,t)=1, a во всех остальных клетках вероятности P(k,t) равны нулю. Следовательно, H=ln(1/(1/8))=ln8. Со временем частицы распределяются по клеткам равномерно, и P(k,t)=Pравн(k)=1/8. H-функция при этом обращается в нуль. Можно показать, что H-функция убывает монотонно, как это изображено на рис. 25. (Доказательство этого утверждения приводится во всех учебниках по теории стохастических процессов.) Именно поэтому H-функция играет роль «негэнтропии» — S. Монотонное убывание H-функции имеет очень простой смысл: оно отражает и служит мерой прогрессирующего выравнивания неоднородностей в системе. Начальная информация утрачивается, и система эволюционирует от «порядка» к «беспорядку».

Заметим, что марковский процесс включает в себя флуктуации. Это отчетливо видно на рис. 24. Подождав достаточно долго, мы могли бы вернуться в исходное состояние. Следует, однако, подчеркнуть, что речь идет о средних: монотонно убывающая Hм-функция может быть выражена через распределения вероятностей, а не через отдельные события. Именно распределение вероятностей эволюционирует необратимо (в модели Эренфестов функция распределения равномерно стремится к биномиальному распределению). Следовательно, на уровне функций распределения цепи Маркова приводят к однонаправленности во времени.

Стрела времени характеризует различие между цепями Маркова и временной эволюцией в квантовой механике, в которой волновая функция (самым непосредственным образом связанная с вероятностями) эволюционирует во времени обратимо. Это также один из примеров тесной взаимосвязи между стохастическими процессами, например цепями Маркова, и необратимостью. Однако возрастание энтропии (или убывание H-функции) основывается не на стреле времени, заложенной в законах природы, а на нашем решении воспользоваться знанием, которым мы располагаем в настоящем, для предсказания поведения в будущем (но не в прошлом). Вот что говорит об этом в присущей ему лапидарной манере Гиббс:

«Но хотя по отношению к математическим построениям различие между предшествующими и последующими событиями и может являться несущественным, по отношению к событиям реального мира дело обстоит совершенно иначе. В тех случаях, когда мы используем ансамбли для вычисления вероятностей событий, происходящих в реальном мире, нельзя забывать о том, что если вероятности последующих событий довольно часто можно определить, зная вероятности предшествующих, то лишь в весьма редких случаях удается определить вероятности предшествующих событий, зная вероятности последующих, ибо лишь чрезвычайно редко можно обоснованно исключить из рассмотрения априорную вероятность предшествующих событий»7.

Асимметрия между прошлым и будущим — важный вопрос, бывший и продолжающий оставаться предметом оживленного обсуждения8. Теория вероятностей ориентирована во времени. Предсказание будущего отлично от восстановления хода событий задним числом. Если бы этим отличием все и ограничилось, то нам не оставалось бы ничего другого, как принять субъективную интерпретацию необратимости, так как различие между прошлым и будущим оказалось бы зависимым только от нас. Иначе говоря, при субъективной интерпретации необратимости (к тому же подкрепляемой сомнительной аналогией с теорией информации) «ответственность» за асимметрию во времени, характеризующую развитие системы, возлагается на наблюдателя. А так как наблюдатель не может «одним взглядом» определить положения и скорости всех частиц, образующих сложную систему, ему не известно мгновенное состояние системы, содержащее в себе ее прошлое и будущее; он не в состоянии постичь обратимый закон, который позволил бы предсказать развитие системы от одного момента времени к следующему. Наблюдатель не может также производить над системой такие манипуляции, какие производил максвелловский демон, способный разделять быстро и медленно движущиеся частицы и вынуждать систему к антитермодинамической эволюции от менее к более неоднородному распределению температуры9.

Термодинамика по-прежнему остается наукой о сложных системах, но с указанной точки зрения единственной специфической особенностью сложных систем является то, что наше знание о них ограниченно и неопределенность со временем возрастает. Вместо того чтобы распознать в необратимости связующее звено между природой и наблюдателем, ученый вынужден признать, что природа лишь отражает его собственное незнание. Природа безответна. Необратимость, отнюдь не способствуя укреплению наших позиций в физическом мире, представляет собой не более чем отзвук человеческой деятельности и ее пределов.

Против подобной точки зрения сразу же можно возразить. Приведенные выше интерпретации исходят из того, что термодинамика должна быть столь же универсальной, как и наше незнание. Но тогда должны существовать только необратимые процессы. Именно это и является камнем преткновения всех универсальных интерпретаций энтропии, уделяющих основное внимание нашему незнанию начальных (или граничных) условий. Необратимость — не универсальное свойство. Чтобы установить связь между динамикой и термодинамикой, необходим физический критерий, который позволил бы нам различать обратимые и необратимые процессы.

Наши рекомендации