Теорема косинусов
Теорема косинусов. Квадрат длины стороны треугольника равен сумме квадратов длин других сторон минус удвоенное произведение длин этих сторон на косинус угла между ними.
a2 = b 2 + c 2 – 2bc cosA |
Если у треугольника известны длины всех сторон, то с помощью теоремы косинусов можно найти косинус любого угла треугольника, например,
Расположение ортоцентров у треугольников различных типов Высоты треугольника (или их продолжения) пересекаются в одной точке.
Фигура | Рисунок | Описание |
Остроугольный треугольник | Ортоцентр остроугольного треугольника лежит внутри треугольника. | |
Прямоугольный треугольник | Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла | |
Тупоугольный треугольник | Ортоцентр тупоугольного треугольника лежит вне треугольника. В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника. |
Биссектриса треугольника
Напомним, что биссектрисой угла называют луч, делящий угол пополам.
Определение. Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника и соединяющий вершину треугольника с точкой на противоположной стороне (рис 1).
Поскольку в каждом треугольнике имеются три угла, то в каждом треугольнике можно провести три биссектрисы.
На рисунке 1 биссектрисой является отрезок AD.
Теорема 1. Биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника.
Следствие 1. Рассмотрим рисунок 3, на котором изображен тот же треугольник, как и на рисунке 1, но для длин отрезков использованы обозначения
Замечание. В любом треугольнике все три биссектрисы пересекаются в одной точке, которая является центром окружности, вписанной в треугольник.