Многогранники в искусстве и архитектуре

Великая пирамида в Гизе является одним из 7 чудес древности. Кроме того, это единственное из чудес, сохранившееся до наших дней. Во времена своего создания Великая пирамида была самым высоким сооружением в мире. И удерживала она этот рекорд, по всей видимости, почти 4000 лет.

Пирамиды стоят на древнем кладбище в Гизе, на противоположном от Каира, столицы современного Египта, берегу реки Нил. Некоторые археологи считают, что, возможно, на строительство Великой пирамиды 100 000 человек потребовалось 20 лет. Она была создана из 2 миллионов каменных блоков, каждый из которых весил не менее 2,5 тонн. Рабочие подтаскивали их к месту, используя пандусы, блоки и рычаги, а затем подгоняли друг к другу, без раствора.

В III веке до н.э. был построен Александрийский маяк, чтобы корабли могли благополучно миновать рифы на пути в александрийскую бухту. Ночью им помогало в этом отражение языков пламени, а днем - столб дыма. Это был первый в мире маяк, и простоял он 1500 лет. Маяк был построен на маленьком острове Фарос в Средиземном море, около берегов Александрии. Этот оживленный порт основал Александр Великий во время посещения Египта. Сооружение назвали по имени острова. На его строительство, должно быть, ушло 20 лет, а завершен он был около 280 г. до н.э., во времена правления Птолемея II, царя Египта. Фаросский маяк состоял из трех мраморных башен, стоявших на основании из массивных каменных блоков. Первая башня была прямоугольной, в ней находились комнаты, в которых жили рабочие и солдаты. Над этой башней располагалась меньшая, восьмиугольная башня со спиральным пандусом, ведущим в верхнюю башню. Верхняя башня формой напоминала цилиндр, в котором горел огонь, помогавший кораблям благополучно достигнуть бухты. На вершине башни стояла статуя Зевса Спасителя. Общая высота маяка составляла 117 метров.

В эпоху Возрождения большой интерес к формам правильных многогранников проявили скульпторы, архитекторы, художники. Леонардо да Винчи (1452-1519) например, увлекался теорией многогранников и часто изображал их на своих полотнах. Он проиллюстрировал правильными и полуправильными многогранниками книгу Монаха Луки Пачоли «О божественной пропорции».

Знаменитый художник, увлекавшийся геометрией, Альбрехт Дюрер (1471-1528гг.), в известной гравюре «Меланхолия» на переднем плане изобразил додекаэдр.

Голландский художник Мориц Корнилис Эшер, родившийся в 1989 году в Леувардене, создал уникальные и очаровательные работы, в которых использованы или показаны широкий круг математических идей.

Правильные геометрические тела - многогранники - имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. На гравюре «Четыре тела» Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.

Большое количество различных многогранников может быть получено объединением правильных многогранников, а также превращением многогранника в звезду. Для преобразования многогранника в звезду необходимо заменить каждую его грань пирамидой, основанием которой является грань многогранника.

Изящный пример звездчатого додекаэдра можно найти в работе «Порядок и хаос». В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором. Заметим также, что анализируя картину можно догадаться о природе источника света для всей композиции - это окно, которое отражается левой верхней частью сферы.

Фигуры, полученные объединением правильных многогранников, можно встретить во многих работах Эшера. Наиболее интересной среди них является гравюра «Звезды», на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров. Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он поместил внутрь центральной фигуры хамелеонов, чтобы затруднить восприятие всей фигуры. Таким образом, необходимо отвлечься от привычного восприятия картины и попытаться взглянуть на нее свежим взором, чтобы представить ее целиком. Этот аспект данной картины является еще одним предметом восхищения математиков творчеством Эшера.

Литература:

1. Александров А. Д. и др. Геометрия для 10-11 классов: Учеб. Пособие для учащихся шк. и классов с углубл. изуч. математики / А. Д. Александров, А. Л. Вернер, В. И. Рыжик. – 3-е изд., перераб. - М.: Просвещение, 1992 – 464 с.

2. Атанасян Н. Г. Геометрия 10-11 – М.: Просвещение, 2000

3. Гончар В. В. Модели многогранников. – М.: Аким, 1997. – 64 с.

4. Математика: Школьная энциклопедия / гл. ред. Никольский С. М. – М.: Научное изд. «Большая Российская энциклопедия», 1996

5. Савин А. П. Энциклопедический словарь юного математика. – М.: Педагогика, 1985. – 352 с.

6. Смирнова И. М., Смирнов В. А. Геометрия, 10-11 классы: Учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни). – М.: Мнемозина, 2009

7. Советская энциклопедия – М., 1979

8. Шашкин Ю. А. Эйлерова характеристика – М.: Наука, 1984. – 96 с.

Наши рекомендации