ВОПРОС 48 (Доказательство и аргументация)
Доказательность — важное качество правильного мышления. Доказательство необходимо в научном мире, оно определяет истинность того или иного явления, суждения, умозаключения. Без доказательства любая гипотеза навсегда останется гипотезой и не приобретет значение теории. Это хорошо, ведь цель доказательства — получение истинных знаний. Любое новое явление, догадку необходимо доказывать, будь то тайны, связанные с космическим пространством или глубинами океана, математические изыскания и т. д. С этих позиций можно определить доказательство как совокупность логических приемов обоснования истинности какого-либо суждения с помощью других истинных и связанных с ним суждений.
В обыденном смысле доказательство часто отождествляют с убеждением, что недопустимо. Эти два понятия могут совпадать в части, но слишком во многом различны. Так, доказательство основано исключительно на научно обоснованных фактах, изысканиях, теориях и т. д. Убеждение же зачастую не зависит от того, доказано научным путем утверждаемое или нет. Убеждение возможно в отношении теорий вероятностных или вообще ложных.
Структуру доказательства составляют тезис, аргументы и демонстрация. Тезис — это положение, требующее доказательства. Аргументы — это истинные суждения, используемые в процессе доказательства. Демонстрация — это способ логической связи между тезисом и аргументами.
Существуют правила доказательного рассуждения. Нарушение этих правил ведет к ошибкам, относящимся к доказываемому тезису, аргументам или к самой форме доказательства.
Доказательство бывает прямым и непрямым. Прямое доказательство идет от рассмотрения аргументов к доказательству тезиса, т. е. истинность доказательства непосредственно обосновывается аргументами. Можно сказать, что при прямом доказательстве из аргументов (a, b, c…) обязательно следуют истинные суждения (k, m, l…), а из последних следует доказываемый тезис q. По этому типу проводятся доказательства в судебной практике, в науке, в полемике. Широко используется прямое доказательство в статистических отчетах, в различного рода документах, в постановлениях.
При непрямом доказательстве истинность выдвинутого суждения обосновывается путем доказательства ложности исключающего его суждения. Применение такого доказательства обосновано, когда нет аргументов для прямого доказательства. В зависимости от формы антитезиса можно выделить два вида непрямого доказательства — от противного и разделительное. Доказательство от противного (апагогическое) осуществляется путем установления ложности противоречащего тезису суждения. Этот метод часто используется в математике. Разделительное доказательство производится на основе отрицания антитезиса. При условии перечисления всех антитезисов и их последовательном отрицании (и отбрасывании) можно говорить об установлении истинности утверждаемого суждения.
Аргументация
Как уже было сказано, любое доказательство нуждается в аргументах. На них доказывающий опирается, они несут в себе информацию, позволяющую с достоверностью говорить о том или ином предмете. В логике выделяется несколько аргументов. К ним относятся удостоверенные единичные факты, аксиомы и постулаты, ранее доказанные положения и определения.
Удостоверенные факты представляют собой информацию, закрепленную в каких-либо документах, произведениях, базах данных и на различных носителях. Можно определить эту группу аргументов как фактические данные. К таким данным можно отнести сведения статистики, факты из жизни, свидетельства, документы и документальные хроники и т. д. Такие аргументы играют важную роль в процессе доказательства, так как тверды, неопровержимы, уже доказаны. Они могут нести информацию о прошлом, что также делает удостоверенные факты важными в познавательном плане.
Аксиомы. Многие из нас при слове «постулаты» вспоминают школу и уроки математики. И действительно, аксиомы широко используются в математических построениях, математическая логика часто опирается на них. Подтвержденные опытом, ранее доказанными фактами, неоднократным повторением доказывания, эти суждения не нуждаются в доказывании и принимаются в качестве аргументов.
Положения законов, теоремы, которые были доказаны в прошлом, принимаются в качестве аргументов доказательства, так как истинность их уже определена и принята. Эта группа аргументов напоминает о том, что все аргументы, положенные в основу доказательства, должны быть доказаны. Доказывание аргументов этой группы может производиться как непосредственно перед доказыванием аксиомы, так и задолго до этого. К этой группе можно отнести научно доказанные законы (например, природы) и теоремы.
Последняя группа аргументов — это определения. Они создаются в рамках всех наук относительно рассматриваемых предметов и раскрывают суть последних. В доказательстве можно опираться на определения, принятые и применяемые в какой-либо науке. Однако не следует забывать о том, что относительно многих определений ведутся дискуссии и доказательство на их основе может быть не принято оппонентом. Здесь же необходимо сказать о недопустимости использования ненаучных определений, так как основная мысль в них может быть искажена, а сами определения могут быть неполными или даже ложными.
ВОПРОС 49 (Методы подтверждения тезиса)
Обусловливающее подтверждение тезиса представляет собой его выведение из установленной истинности аргументов. Например, тезис: Студент Н. готов к зачету может быть выведен из следующих истинных суждений: 1. Если студент посещал занятия, добросовестно изучал материал, выполнял все необходимые задания, то он готов к зачету; 2. Студент Н. посещал занятия, добросовестно изучал материал, выполнял все необходимые задания. Причем демонстрация в данном случае проходит в форме утверждающего модуса условно-категорического силлогизма:
Если студент посещал занятия, добросовестно изучал материал, выполнял все необходимые задания, то он готов к зачету. Студент Н. посещал занятия, добросовестно изучал материал, выполнял все необходимые задания. Студент Н. готов к зачету.
Соединительное подтверждение тезиса предполагает обобщение всех однородных условий (случаев), при которых он является истинным. Например, тезис: Группа альпинистов, состоящая из пяти человек, готова к восхождению истинен только тогда, когда каждый член группы готов к восхождению. Здесь аргументами, из которых вытекает тезис, должны быть пять истинных суждений: 1. Первый член группы готов к восхождению; 2. Второй член группы готов к восхождению и т.д. В рассматриваемом примере демонстрация выражается в форме полной индукции.
Отводящее подтверждение тезиса выводит его истинность из установленной ложности антитезиса. Например, для того чтобы подтвердить истинность тезиса: Из точки, не лежащей на прямой, можно провести только один перпендикуляр к этой прямой, надо выдвинуть антитезис: Из точки, не лежащей на прямой, можно провести не только один перпендикуляр к этой прямой (а два, три и более). Далее следует установить ложность этого антитезиса: если, например, из точки, не лежащей на прямой, провести два перпендикуляра к этой прямой, то они образуют с ней треугольник, у которого будет два прямых угла, что невозможно в силу теоремы о сумме внутренних углов треугольника. Как видим, антитезис ложен, а тезис, следовательно, истинен. В таком доказательстве демонстрацией является отрицающий модус условно-категорического силлогизма:
Если из точки, не лежащей на прямой, можно провести более одного перпендикуляра к этой прямой, тогда возможен треугольник с двумя прямыми углами. Треугольник с двумя прямыми углами невозможен. Из точки, не лежащей на прямой, нельзя провести более одного перпендикуляра к этой прямой. Отводящее подтверждение тезиса также часто называется апагогическим.
Разделительное подтверждение тезиса состоит в исключении всех возможных альтернатив чего-либо, кроме одной, которая и представляет собой доказываемый тезис. Например, отсутствуют прямые свидетельства в пользу тезиса: Стихотворение знаменитого поэта посвящено К.Однако при этом известно, что оно могло быть посвящено либо К., либо Н., либо О., и никому, кроме этих трех лиц (последние две возможности представляют собой антитезис). Если точно установлено, что стихотворение не посвящено ни Н., ни О., то следует признать, что оно посвящено К. (из ложности антитезиса выводится истинность тезиса). В данном случае демонстрация проходит в форме отрицающе-утверждающего модуса разделительно- категорического силлогизма