Простые и сложные высказывания
Высказывание — более сложное образование, чем имя. При разложении высказываний на более простые части мы всегда получаем те или иные имена. Скажем, высказывание «Солнце есть звезда» включает в качестве своих частей имена «Солнце» и «звезда».
Высказывание — грамматически правильное предложение, взятое вместе с выражаемым им смыслом (содержанием) и являющееся истинным или ложным.
Понятие высказывания — одно из исходных, ключевых понятий логики. Как таковое оно не допускает точного определения, в равной мере приложимого в разных ее разделах.
Высказывание считается истинным, если даваемое им описание соответствует реальной ситуации, и ложным — если не соответствует ей. «Истина» и «ложь» называются «истинностными значениями высказываний».
Из отдельных высказываний разными способами можно строить новые высказывания.
Например, из высказывания «Дует ветер» и «Идет дождь» можно образовать более сложные высказывания «Дует ветер, и идет дождь», «Либо дует ветер, либо идет дождь», «Если идет дождь, то дует ветер» и т. п.
Высказывание называется простым, если оно не включает других высказывании в качестве своих частей.
Высказывание называется сложным, если оно получено с помощью логических связок из других более простых высказываний.
Рассмотрим наиболее важные способы построения сложных высказываний.
Отрицательное высказывание состоит из исходного высказывания и отрицания, выражаемого обычно словами «не», «неверно, что». Отрицательное высказывание является, таким образом, сложным высказыванием: оно включает в качестве своей части отличное от него высказывание. Например, отрицанием высказывания «10 — четное число» является высказывание «10 не есть четное число» (или: «Неверно, что 10 есть четное число»).
Обозначим высказывания буквами А, В, С,… Полный смысл понятия отрицания высказывания задается условием: если высказывание А истинно, его отрицание ложно, и если А ложно, его отрицание истинно. Например, так как высказывание «1 есть целое положительное число» истинно, его отрицание «1 не является целым положительным числом» ложно, а так как «1 есть простое число» ложно, его отрицание «1 не есть простое число» истинно.
Соединение двух высказываний при помощи слова «и» дает сложное высказывание, называемое конъюнкцией. Высказывания, соединяемые таким образом, называются «членами конъюнкции».
Например, если высказывания «Сегодня жарко» и «Вчера было холодно» соединить таким способом, получится конъюнкция «Сегодня жарко и вчера было холодно».
Конъюнкция истинна только в случае, когда оба входящих в нее высказывания являются истинными; если хотя бы один из ее членов ложен, то и вся конъюнкция ложна.
В обычном языке два высказывания соединяются союзом «и», когда они связаны между собой по содержанию, или смыслу. Характер этой связи не вполне ясен, но понятно, что мы не рассматривали бы конъюнкцию «Он шел в пальто, и я шел в университет» как выражение, имеющее смысл и способное быть истинным или ложным. Хотя высказывания «2 — простое число» и «Москва — большой город» истинны, мы не склонны считать истинной также их конъюнкцию «2 — простое число, и Москва — большой город», поскольку составляющие ее высказывания не связаны между собой по смыслу. Упрощая значение конъюнкции и других логических связок и отказываясь для этого от неясного понятия «связь высказываний по смыслу», логика делает значение этих связок одновременно и более широким, и более ясным.
Соединение двух высказываний с помощью слова «или» дает дизъюнкцию этих высказываний. Высказывания, образующие дизъюнкцию, называются «членами дизъюнкции».
Слово «или» в повседневном языке имеет два разных смысла. Иногда оно означает «одно или другое или оба», а иногда «одно или другое, но не оба вместе». Например, высказывание «В этом сезоне я хочу пойти на „Пиковую даму“ или на „Аиду“» допускает возможность двукратного посещения оперы. В высказывании «Он учится в Московском или Ярославском университете» подразумевается, что упоминаемый человек учится только в одном из этих университетов.
Первый смысл «или» называется неисключающим. Взятая в этом смысле дизъюнкция двух высказываний означает, что по крайней мере одно из этих высказываний истинно, независимо от того, истинны они оба или нет. Взятая во втором, исключающем, или строгом, смысле дизъюнкция двух высказываний утверждает, что одно из высказываний истинно, а второе — ложно.
Неисключающая дизъюнкция истинна, когда хотя бы одно из входящих в нее высказываний истинно, и ложна, только когда оба ее члена ложны.
Исключающая дизъюнкция истинна, когда истинным является только один из ее членов, и она ложна, когда оба ее члена истинны или оба ложны.
В логике и математике слово «или» почти всегда употребляется в неисключающем значении.
Условное высказывание — сложное высказывание, формулируемое обычно с помощью связки «если …, то …» и устанавливающее, что одно событие, состояние и т. п. является в том или ином смысле основанием или условием для другого.
Например: «Если есть огонь, то есть дым», «Если число делится на 9, оно делится на 3» и т. п.
Условное высказывание слагается из двух более простых высказываний. То из них, которому предпослано слово «если», называется основанием, или антецедентом (предыдущим), высказывание, идущее после слова «то», называется следствием, или консеквентом (последующим).
Утверждая условное высказывание, мы прежде всего имеем в виду, что не может быть так, чтобы то, о чем говорится в его основании, имело место, а то, о чем говорится в следствии, отсутствовало. Иными словами, не может случиться, чтобы антецедент был истинным, а консеквент — ложным.
В терминах условного высказывания обычно определяются понятия достаточного и необходимого условия:антецедент (основание) есть достаточное условие для консеквента (следствия), а консеквент — необходимое условие для антецедента. Например, истинность условного высказывания «Если выбор рационален, то выбирается лучшая из имеющихся альтернатив» означает, что рациональность — достаточное основание для избрания лучшей из имеющихся возможностей и что выбор такой возможности есть необходимое условие его рациональности.
Типичной функцией условного высказывания является обоснование одного высказывания ссылкой на другое высказывание. Например, то, что серебро электропроводно, можно обосновать ссылкой на то, что оно металл: «Если серебро — металл, оно электропроводно».
Выражаемую условным высказыванием связь обосновывающего и обосновываемого (основания и следствия) трудно охарактеризовать в общем виде, и только иногда природа ее относительно ясна. Эта связь может быть, вопервых, связью логического следования, имеющей место между посылками и заключением правильного умозаключения («Если все живые многоклеточные существа смертны, а медуза является таким существом, то она смертна»); вовторых, законом природы («Если тело подвергнуть трению, оно начнет нагреваться»); втретьих, причинной связью («Если Луна в новолуние находится в узле своей орбиты, наступает солнечное затмение»); вчетвертых, социальной закономерностью, правилом, традицией («Если меняется общество, меняется также человек», «Если совет разумен, он должен быть выполнен») и т. п.
Со связью, выражаемой условным высказыванием, обычно соединяется убеждение, что следствие с определенной необходимостью «вытекает» из основания и что имеется некоторый общий закон, сумев сформулировать который, мы могли бы логически вывести следствие из основания.
Например, условное высказывание «Если висмут — металл, он пластичен» как бы предполагает общий закон «Все металлы пластичны», делающий консеквент данного высказывания логическим следствием его антецедента.
И в обычном языке, и в языке науки условное высказывание кроме функции обоснования может выполнять также ряд других задач: формулировать условие, не связанное с какимлибо подразумеваемым общим законом или правилом («Если захочу, разрежу свой плащ»); фиксировать какуюто последовательность («Если прошлое лето было сухим, то в этом году оно дождливое»); выражать в своеобразной форме неверие («Если вы решите эту задачу, я докажу великую теорему Ферма»); противопоставление («Если в огороде растет бузина, то в Киеве живет дядька») и т. п. Многочисленность и разнородность функций условного высказывания существенно затрудняет его анализ.
Употребление условного высказывания связано с определенными психологическими факторами. Обычно мы формулируем такое высказывание, только если не знаем с определенностью, истинны или нет его антецедент и консеквент. В противном случае его употребление кажется неестественным («Если вата — металл, она электропроводна»).
Условное высказывание находит очень широкое применение во всех сферах рассуждения. В логике оно представляется, как правило, посредством импликативного высказывания, или импликации. При этом логика проясняет, систематизирует и упрощает употребление «если…, то…», освобождает его от влияния психологических факторов.
Логика отвлекается, в частности, от того, что характерная для условного высказывания связь основания и следствия в зависимости от контекста может выражаться с помощью не только «если…, то…», но и других языковых средств.
Например, «Так как вода жидкость, она передает давление во все стороны равномерно», «Хотя пластилин и не металл, он пластичен», «Если бы дерево было металлом, оно было бы электропроводно» и т. п. Эти и подобные им высказывания представляются в языке логики посредством импликации, хотя употребление в них «если…, то…» было бы не совсем естественным.
Утверждая импликацию, мы утверждаем, что не может случиться, чтобы ее основание имело место, а следствие отсутствовало. Иными словами, импликация является ложной только в том случае, когда ее основание истинно, а следствие ложно.
Это определение предполагает, как и предыдущие определения связок, что всякое высказывание является либо истинным, либо ложным и что истинностное значение сложного высказывания зависит только от истинностных значений составляющих его высказываний и способа их связи.
Импликация истинна, когда и ее основание, и ее следствие истинны или ложны; она истинна, если ее основание ложно, а следствие истинно. Только в четвертом случае, когда основание истинно, а следствие ложно, импликация ложна.
Импликацией не предполагается, что высказывания А и В както связаны между собой по содержанию. В случае истинности В высказывание «если А, то В» истинно независимо от того, является А истинным или ложным и связано оно по смыслу с В или нет.
Например, истинным считаются высказывания: «Если на Солнце есть жизнь, то дважды два равно четыре», «Если Волга — озеро, то Токио — большая деревня» и т. п. Условное высказывание истинно также тогда, когда А ложно, и при этом опятьтаки безразлично, истинно В или нет и связано оно по содержанию с А или нет. К истинным относятся высказывания: «Если Солнце — куб, то Земля — треугольник», «Если дважды два равно пять, то Токио — маленький город» и т. п.
В обычном рассуждении все эти высказывания вряд ли будут рассматриваться как имеющие смысл и еще в меньшей степени как истинные.
Хотя импликация полезна для многих целей, она не совсем согласуется с обычным пониманием условной связи. Импликация охватывает многие важные черты логического поведения условного высказывания, но она не является вместе с тем достаточно адекватным его описанием.
В последние полвека были предприняты энергичные попытки реформировать теорию импликации. При этом речь шла не об отказе от описанного понятия импликации, а о введении наряду с ним другого понятия, учитывающего не только истинностные значения высказываний, но и связь их по содержанию.
С импликацией тесно связана эквивалентность, называемая иногда «двойной импликацией».
Эквивалентность — сложное высказывание «А, если и только если В», образованное из высказываний А и В и разлагающееся на две импликации: «если А, то В», и «если В, то А». Например: «Треугольник является равносторонним, если и только если он является равноугольным». Термином «эквивалентность» обозначается и связка «…, если и только если…», с помощью которой из двух высказываний образуется данное сложное высказывание. Вместо «если и только если» для этой цели могут использоваться «в том и только в том случае, когда», «тогда и только тогда, когда » и т. п.
Если логические связки определяются в терминах истины и лжи, эквивалентность истинна тогда и только тогда, когда оба составляющих ее высказывания имеют одно и то же истинностное значение, т. е. когда они оба истинны и оба ложны. Соответственно, эквивалентность является ложной, когда одно из входящих в нее высказываний истинно, а другое ложно.
Категорические высказывания
При рассмотрении способов образования сложных высказываний из простых внутреннее строение простых высказываний во внимание не принималось. Они брались как неразложимые частицы, обладающие только одним свойством: быть истинными или ложными. Простые высказывания
Категорические высказывания
не случайно иногда называют атомарными: из них, как из элементарных кирпичиков, с помощью логических связок «и», «или» и т. п. строятся разнообразные сложные («молекулярные») высказывания.
Теперь следует остановиться на вопросе о внутреннем строении, или внутренней структуре, самих простых высказываний: из каких конкретных частей они слагаются и как эти части связаны между собой.
Сразу же нужно подчеркнуть, что простые высказывания могут разлагаться на составные части поразному. Результат разложения зависит от цели, ради которой оно осуществляется, т. е. от той концепции логического вывода (логического следования), в рамках которой анализируются такие высказывания.
Далее рассматривается лишь одна разновидность простых высказываний — категорические высказывания, по традиции называемые также категорическими суждениями.
Особый интерес к категорическим высказывания объясняется прежде всего тем, что с изучения их логических связей началось развитие логики как науки. Кроме того, высказывания этого типа широко используются в наших рассуждениях. Теория логических связей категорических высказываний обычно именуется силлогистикой.
Категорическое высказывание — это высказывание, в котором утверждается или отрицается наличие какогото признака у всех или некоторых предметов рассматриваемого класса.
Например, в высказывании «Все динозавры вымерли» динозаврам приписывается признак «быть вымершими». В суждении «Некоторые динозавры летали» способность летать приписывается отдельным видам динозавров. В суждении «Все кометы не астероиды» отрицается наличие признака «быть астероидом» у каждой из комет. В суждении «Некоторые животные не являются травоядными» отрицается травоядность некоторых животных.
Если отвлечься от количественной характеристики, содержащейся в категорическом высказывании и выражающейся словами «все» и «некоторые», то получится два варианта таких высказываний: утвердительный и отрицательный. Их структура:
«S есть Р» и «S не есть Р»,
где буква S представляет имя того предмета, о котором идет речь в высказывании, а буква Р — имя признака, присущего или не присущего этому предмету.
Имя предмета, о котором говорится в категорическом высказывании, называется субъектом, а имя его признака — предикатом. Субъект и предикат именуются терминами категорического высказывания и соединяются между собой связками «есть» или «не есть» («является» или «не является» и т. п.). Например, в высказывании «Солнце есть звезда» терминами являются имена «Солнце» и «звезда» (первый из них — субъект высказывания, второй — его предикат), а слово «есть» — связка.
Простые высказывания типа «S есть (не есть) Р» называют атрибутивными: в них осуществляется атрибуция (приписывание) какогото свойства предмету.
Атрибутивным высказываниям противостоят высказывания об отношениях, в которых устанавливаются отношения между двумя или большим числом предметов: «Три меньше пяти», «Киев больше Одессы», «Весна лучше осени», «Париж находится между Москвой и НьюЙорком» и т. п. Высказывания об отношениях играют существенную роль в науке, особенно в математике. Они не сводятся к категорическим высказываниям, поскольку отношения между несколькими предметами (такие, как «равно», «любит», «теплее», «находится между» и т. д.) не сводятся к свойствам отдельных предметов. Одним из существенных недостатков традиционной логики являлось то, что она считала суждения об отношениях сводимыми к суждениям о свойствах.
В категорическом высказывании не просто устанавливается связь предмета и признака, но и дается определенная количественная характеристика субъекта высказывания. В высказываниях типа «Все S есть (не есть) Р» слово «все» означает «каждый из предметов соответствующего класса». В высказываниях типа «Некоторые S есть (не есть) Р» слово «некоторые» употребляется в неисключающем смысле и означает «некоторые, а может быть все». В исключающем смысле слово «некоторые» означает «только некоторые», или «некоторые, но не все». Различие между двумя смыслами этого слова можно продемонстрировать на примере высказывания «Некоторые звезды есть звезды». В неисключающем смысле оно означает «Некоторые, а возможно, и все звезды являются звездами» и является, очевидно, истинным. В исключающем же смысле данное высказывание означает «Лишь некоторые звезды являются звездами» и является явно ложным.
В категорических высказываниях утверждается или отрицается принадлежность какихто признаков рассматриваемым предметам и указывается, идет ли речь обо всех этих предметах или же о некоторых из них.
Возможны, таким образом, четыре вида категорических высказываний:
Все S есть Р — общеутвердительное высказывание,
Некоторые S есть Р — частноутвердительное высказывание,
Все S не есть Р — общеотрицательное высказывание,
Некоторые S не есть Р — частноотрицательное высказывание.
Категорические высказывания можно рассматривать как результаты подстановки какихто имен в следующие выражения с пробелами (многоточиями): «Все … есть …», «Некоторые … есть …», «Все … не есть …» и «Некоторые … не есть …». Каждое из этих выражений является логической постоянной (логической операцией), позволяющей из двух имен получить высказывание. Например, подставляя вместо многоточий имена «летающие» и «птицы», получаем, соответственно, следующие высказывания: «Все летающие есть птицы», «Некоторые летающие есть птицы»,
Умозаключения
«Все летающие не есть птицы» и «Некоторые летающие не есть птицы». Первое и третье высказывания являются ложными, а второе и четвертое — истинными.
Умозаключения
«По одной капле воды человек, умеющий мыслить логически, может сделать вывод о существовании Атлантического океана или Ниагарского водопада, даже если он не видал ни того ни другого и никогда о них не слыхал… По ногтям человека, по его рукам, обуви, сгибу брюк на коленях, по утолщениям кожи на большом и указательном пальцах, по выражению лица и обшлагам рубашки — по таким мелочам нетрудно угадать его профессию. И можно не сомневаться, что все это, вместе взятое, подскажет сведущему наблюдателю верные выводы».
Это цитата из программной статьи самого знаменитого в мировой литературе сыщикаконсультанта Шерлока Холмса. Исходя из мельчайших деталей, он строил логически безупречные цепи рассуждений и раскрывал запутанные преступления, причем часто не выходя из своей квартиры на Бейкерстрит. Холмс использовал созданный им самим дедуктивный метод, ставящий, как полагал его друг доктор Ватсон, раскрытие преступлений на грань точной науки.
Конечно, Холмс несколько преувеличивал значение дедукции в криминалистике, но его рассуждения о дедуктивном методе сделали свое дело. «Дедукция» из специального и известного только немногим термина превратилась в общеупотребительное и даже модное понятие. Популяризация искусства правильного рассуждения, и прежде всего дедуктивного рассуждения, — не меньшая заслуга Холмса, чем все раскрытые им преступления. Ему удалось «придать логике прелесть грезы, пробирающейся сквозь хрустальный лабиринт возможных дедукций к единственному сияющему выводу» (В. Набоков).
Дедукция — это частный случай умозаключения.
В широком смысле умозаключение — логическая операция, в результате которой из одного или нескольких принятых утверждений (посылок) получается новое утверждение — заключение (вывод, следствие).
В зависимости от того, существует ли между посылками и заключением связь логического следования, можно выделить два вида умозаключений.
В основе дедуктивного умозаключения лежит логический закон, в силу чего заключение с логической необходимостью вытекает из принятых посылок.
Отличительная особенность такого умозаключения в том, что оно от истинных посылок всегда ведет к истинному заключению.
В индуктивном умозаключении связь посылок и заключения опирается не на закон логики, а на некоторые фактические или психологические основания, не имеющие чисто формального характера.
В таком умозаключении заключение не следует логически из посылок и может содержать информацию, отсутствующую в них. Достоверность посылок не означает поэтому достоверности выведенного из них индуктивно утверждения. Индукция дает только вероятные, или правдоподобные, заключения, нуждающиеся в дальнейшей проверке.
К дедуктивным относятся, к примеру, такие умозаключения:
Если идет дождь, земля мокрая. Идет дождь.
Земля мокрая.
Если гелий — металл, он электропроводен. Гелий не электропроводен.
Гелий не металл.
Черта, отделяющая посылки от заключения, заменяет, как обычно, слово «следовательно».
Примерами индукции могут служить рассуждения:
Аргентина является республикой; Бразилия — республика; Венесуэла — республика; Эквадор — республика.
Аргентина, Бразилия, Венесуэла, Эквадор — латиноамериканские государства.
Все латиноамериканские государства являются республиками.
Италия — республика, Португалия — республика, Финляндия – республика, Франция — республика.
Италия, Португалия, Финляндия, Франция — западноевропейские страны.
Все западноевропейские страны являются республиками.
Индукция не дает полной гарантии получения новой истины из уже имеющихся. Максимум, о котором можно говорить, — это определенная степень вероятности выводимого утверждения. Так посылки и первого и второго индуктивного умозаключения истинны, но заключение первого из них истинно, а второго — ложно. Действительно, все латиноамериканские государства — республики; но среди западноевропейских стран имеются не только республики, но и монархии, например Англия, Бельгия и Испания.
Умозаключения
Особенно характерными дедукциями являются логические переходы от общего знания к частному, типа:
Все металлы пластичны. Медь — металл.
Медь пластична.
Во всех случаях, когда требуется рассмотреть какието явления на основании уже известного общего правила и вывести в отношении этих явлений необходимое заключение, мы умозаключаем в форме дедукции. Рассуждения, ведущие от знания о части предметов (частного знания) к знанию обо всех предметах определенного класса (общему знанию), — это типичные индукции. Всегда остается вероятность того, что обобщение окажется поспешным и необоснованным («Наполеон — полководец; Суворов — полководец; значит, каждый человек полководец»).
Нельзя вместе с тем отождествлять дедукцию с переходом от общего к частному, а индукцию — с переходом от частного к общему.
В рассуждении «Шекспир писал сонеты; следовательно, неверно, что Шекспир не писал сонетов» есть дедукция, но нет перехода от общего к частному. Рассуждение «Если алюминий пластичен или глина пластична, то алюминий пластичен» является, как принято думать, индуктивным, но в нем нет перехода от частного к общему.
Дедукция — это выведение заключений, столь же достоверных, как и принятые посылки, индукция — выведение вероятных (правдоподобных) заключений. К индуктивным умозаключениям относятся как переходы от частного к общему, так и аналогия, методы установления причинных связей, подтверждение следствий, целевое обоснование и т. д.
Тот особый интерес, который проявляется к дедуктивным умозаключениям, понятен. Они позволяют из уже имеющегося знания получать новые истины, и притом с помощью чистого рассуждения, без обращения к опыту, интуиции, здравому смыслу и т. п. Дедукция дает стопроцентную гарантию успеха, а не просто обеспечивает ту или иную — быть может, и высокую — вероятность истинного заключения. Отправляясь от истинных посылок и рассуждая дедуктивно, мы обязательно во всех случаях получим достоверное знание.
Подчеркивая важность дедукции в процессе развертывания и обоснования знания, не следует, однако, отрывать ее от индукции и недооценивать последнюю. Почти все общие положения, включая и научные законы, являются результатами индуктивного обобщения. В этом смысле индукция — основа нашего знания. Сама по себе она не гарантирует его истинности и обоснованности, но она порождает предположения, связывает их с опытом и тем самым сообщает им определенное правдоподобие, более или менее высокую степень вероятности. Опыт — источник и фундамент человеческого знания. Индукция, отправляющаяся от того, что постигается в опыте, является необходимым средством его обобщения и систематизации.
ЛОГИЧЕСКИЕ ЗАКОНЫ
Глава
Понятие логического закона
Логические законы составляют основу человеческого мышления. Они определяют, когда из одних высказываний логически вытекают другие высказывания, и представляют собой тот невидимый железный каркас, на котором держится последовательное рассуждение и без которого оно превращается в хаотическую, бессвязную речь. Без логического закона нельзя понять, что такое логическое следование, а тем самым — что такое доказательство.
Правильное, или, как обычно говорят, логичное, мышление, — это мышление по законам логики, по тем абстрактным схемам, которые фиксируются ими. Отсюда понятна вся важность данных законов.
Однородные логические законы объединяются в логические системы, которые тоже обычно именуются «логиками». Каждая из них дает описание логической структуры определенного фрагмента, или типа, наших рассуждений.
Например, законы, описывающие логические связи высказываний, не зависящие от внутренней структуры последних, объединяются в систему, именуемую «логикой высказываний». Логические законы, определяющие связи категорических высказываний, образуют логическую систему, называемую «логикой категорических высказываний», или «силлогистикой», и т. д.
Логические законы объективны и не зависят от воли и сознания человека. Они не являются результатом соглашения между людьми, некоторой специально разработанной или стихийно сложившейся конвенции. Они не являются и порождением какогото «мирового духа», как полагал когдато Платон. Власть законов логики над человеком, их обязательная для правильного мышления сила обусловлена тем, что они представляют отображение в человеческом мышлении реального мира и многовекового опыта его познания и преобразования человеком.
Подобно всем иным научным законам, логические законы являются универсальными и необходимыми. Они действуют всегда и везде, распространяясь в равной мере на всех людей и на любые эпохи. Представители
Понятие логического закона
разных наций и разных культур, мужчины и женщины, древние египтяне и современные полинезийцы с точки зрения логики своих рассуждений не отличаются друг от друга.
Присущая логическим законам необходимость в какомто смысле даже более настоятельна и непреложна, чем природная, или физическая, необходимость. Невозможно даже представить, чтобы логически необходимое было иным. Если чтото противоречит законам природы и является физически невозможным, то никакой инженер, при всей его одаренности, не сумеет реализовать это. Но если нечто противоречит законам логики и является логически невозможным, то не только инженер — даже всемогущее существо, если бы оно вдруг появилось, не смогло бы воплотить это в жизнь.
Как уже говорилось ранее, в правильном рассуждении заключение вытекает из посылок с логической необходимостью, и общая схема такого рассуждения представляет собой логический закон.
Число схем правильного рассуждения (логических законов) бесконечно. Многие из этих схем известны нам из практики рассуждения. Мы применяем их интуитивно, не отдавая себе отчета, что в каждом правильно проведенном нами умозаключении используется тот или иной логический закон.
Прежде чем ввести общее понятие логического закона, приведем несколько примеров схем рассуждения, представляющих собой логические законы. Вместо переменных А, В, С, …, используемых обычно для обозначения высказываний, воспользуемся, как это делалось еще в античности, словами «первое» и «второе», заменяющими переменные.
«Если есть первое, то есть второе; есть первое; следовательно, естьвторое». Эта схема рассуждения позволяет от утверждения условного высказывания («Если есть первое, то есть второе») и утверждения его основания («Есть первое») перейти к утверждению следствия («Есть второе»). По этой схеме протекает, в частности, рассуждение: «Если лед нагревают, он тает; лед нагревают; следовательно, он тает».
Еще одна схема правильного рассуждения: «Либо имеет место первое, либо второе; есть первое; значит, нет второго». Посредством этой схемы от двух взаимоисключающих альтернатив и установления того, какая из них имеет место, осуществляется переход к отрицанию второй альтернативы. Например: «Либо Достоевский родился в Москве, либо он родился в Петербурге. Достоевский родился в Москве. Значит, неверно, что он родился в Петербурге». В американском вестерне «Хороший, плохой и злой» один отрицательный герой говорит другому: «Запомни, мир делится на две части: на тех, кто держит револьвер, и тех, кто копает. Револьвер сейчас у меня, так что бери лопату». Это рассуждение также опирается на указанную схему.
И последний предварительный пример логического закона, или общей схемы правильного рассуждения: «Имеет место первое или второе. Но первого нет. Значит, имеет место второе». Подставим вместо выражения «первое» высказывание «Сейчас день», а вместо «второго» — высказывание «Сейчас ночь». Из абстрактной схемы получаем рассуждение: «Сейчас день или сейчас ночь. Но неверно, что сейчас день.
Значит, сейчас ночь».
Таковы некоторые простые схемы правильного рассуждения, иллюстрирующие понятие логического закона. Сотни и сотни подобных схем сидят у нас в голове, хотя мы и не осознаем этого. Опираясь на них, мы рассуждаем логично, или правильно.
Закон логики (логический закон) — выражение, включающее только логические постоянные и переменные вместо содержательных частей и являющееся истинным в любой области рассуждений.
Возьмем в качестве примера выражения, состоящего только из переменных и логических постоянных, выражение: «Если А, то В; значит, если неА, то неВ». Логическими постоянными здесь являются пропозициональные связки «если, то» и «не». Переменные А и В представляют какието высказывания. Допустим, А — это высказывание «Имеется причина», а В — высказывание «Есть следствие». С данным конкретным содержанием получаем рассуждение: «Если имеется причина, то есть следствие; значит, если нет следствия, то нет и причины». Предположим, далее, что вместо А подставляется высказывание «Число делится на шесть», а вместо В — высказывание «Число делится на три». С этим конкретным содержанием на основе рассматриваемой схемы получаем рассуждение: «Если число делится на шесть, оно делится на три. Следовательно, если число не делится на три, оно не делится на шесть». Какие бы иные высказывания ни подставлялись вместо переменных А и В, если эти высказывания истинны, то и выводимое из них заключение будет истинным.
В логике обычно делается оговорка, что та область объектов, о которой ведется рассуждение и о которой говорят подставляемые в логический закон высказывания, не может быть пустой: в ней должен иметься хотя бы один предмет. В противном случае рассуждение по схеме, представляющей собой закон логики, может вести от истинных посылок к ложному заключению.
Например, из истинных посылок «Все слоны — животные» и «Все слоны имеют хобот» по закону логики вытекает истинное заключение «Некоторые животные имеют хобот». Но если область объектов, о которой идет речь, является пустой, следование закону логики не гарантирует истинного заключения при истинных посылках. Будем рассуждать по такой же схеме, но уже о золотых горах. Построим умозаключение: «Все золотые горы есть горы; все золотые горы — золотые; следовательно, некоторые горы — золотые». Обе посылки этого умозаключения истинны. Но его заключение «Некоторые горы — золотые» явно ложно: ни одной золотой горы не существует.
Понятие логического закона
Таким образом, для рассуждений, опирающихся на закон логики, характерны две особенности:
• такие рассуждения всегда ведут от истинных посылок к истинному заключению;
• следствие вытекает из посылок с логической необходимостью.
Логический закон принято называть также логической тавтологией.
Логическая тавтология — выражение, остающееся истинным, независимо от того, о каких объектах идет речь, или «всегда истинное» выражение.
Например, все результаты подстановок в логический закон двойного отрицания «Если А, то неверно, что неА» являются истинными высказываниями: «Если сажа черная, то неверно, что она не является черной», «Если человек дрожит от страха, то неверно, что он не дрожит от страха» и т. д.
Как уже говорилось, понятие логического закона непосредственно связано с понятием логического следования: заключение логически следует из принятых посылок, если оно связано с ними логическим законом. К примеру, из посылок «Если А, то В» и «Если В, то С» логически следует заключение «Если А, то С», поскольку выражение «Если А, то В, и если В, то С, то если А, то С» представляет собой логический закон, а именно закон транзитивности (переходности). Скажем, из посылок «Если человек отец, то он родитель» и «Если человек родитель, то он отец или мать» по этому закону вытекает следствие «Если человек отец, то он отец или мать».
Логическое следование — отношение между посылками и заключением умозаключения, общая схема которого представляет собой логический закон.
Поскольку связь логического следования опирается на логический закон, для нее характерны две особенности:
• логическое следование ведет от истинных посылок только к истинному заключению;
• заключение, следующее из посылок, вытекает из них с логической необходимостью.
Не все логические законы непосредственно определяют понятие логического следования. Имеются законы, описывающие другие логические связи: «и», «или», «неверно, что» и т. д. и только косвенно связанные с отношением логического следования. Таков, в частности, рассматриваемый далее закон противоречия: «Неверно, что произвольно взятое высказывание и<