Значение законов: объяснение и предсказание
Наблюдения, делаемые нами в повседневной жизни, так же как более систематические наблюдения в науке, обнаруживают в мире определенную повторяемость или регулярность. За днем всегда следует ночь; времена года повторяются в том же самом порядке; огонь всегда ощущается как горячий; предметы падают, когда мы их роняем, и т. д. Законы науки представляют не что иное, как утверждения, выражающие эти регулярности настолько точно, насколько это возможно.
Если некоторая регулярность наблюдается во все времена и во всех местах без исключения, тогда она выступает в форме универсального закона. Пример из повседневной жизни: «Всякий лед — холодный». Это суждение утверждает, что любой кусок льда — в любом месте во вселенной, в любое время, в прошлом, настоящем и будущем — является (был или будет) холодным. Не все законы науки являются универсальными. Вместо того чтобы утверждать, что регулярность встречается во всех случаях, некоторые законы утверждают, что она встречается только в определенном проценте случаев. Если этот процент указывается или если каким-либо иным образом делается количественное утверждение насчет отношения одного события к другому, то такое утверждение называют «статистическим законом». Например, «зрелые яблоки — обычно красные» или «приблизительно половина детей, рождающихся в каждом году,— мальчики». Оба типа законов — универсальные и статистические — необходимы в науке. Универсальные законы логически проще, и поэтому сначала мы рассмотрим именно их. В первой части этого обсуждения под «законами» обычно будут пониматься универсальные законы.
Универсальные законы выражаются в логической форме.
Не все утверждения, высказываемые учеными, имеют логическую форму. Ученый может сказать: «Вчера в Бразилии профессор Смит открыл новый вид бабочек». Это утверждение — не утверждение закона. Оно говорит о специфическом определенном времени и месте; оно устанавливает, что нечто случилось в такое-то время и в таком-то месте. Поскольку такие утверждения, как это, являются утверждениями об отдельных фактах, они называются «единичными» утверждениями. Конечно, все наше познание возникает из единичных утверждений — частных наблюдений отдельных индивидов. Один из больших и сложных вопросов философии науки — это вопрос о том, как мы в состоянии подняться от таких единичных утверждений к универсальным законам.
Когда утверждения делаются ученым на обычном, словесном языке, а не на более точном языке символической логики, мы должны быть крайне внимательными, чтобы не смешать единичные утверждения с универсальными. Если зоолог пишет в учебнике: «Слон — отличный пловец», то он имеет в виду не определенного слона, которого он наблюдал в зоологическом саду и который является отличным пловцом. Когда ученый говорит об «(определенном) слоне», то он использует определенный артикль «the» в аристотелевском смысле; этот артикль относится к целому классу слонов. Все европейские языки унаследовали от греческого (а возможно, и от других языков) эту манеру говорить о единичном, когда в действительности имеется в виду класс или тип. Когда греки говорили: «Человек есть разумное животное», то они имели в виду, конечно, всех людей, а не каких-либо особенных. Подобным же образом мы говорим «слон», когда имеем в виду всех слонов, или «туберкулез характеризуется следующими симптомами...», когда имеем в виду не отдельный случай туберкулеза, а все случаи.
Это — несчастье, что наш язык несет в себе эту двусмысленность, потому что она является источником многих недоразумений. Ученые часто обращаются с универсальными утверждениями — или, скорее, с тем, что выражают такие утверждения, — как с «фактами». Они забывают, что слово «факт» первоначально применялось (и мы будем применять его исключительно в этом смысле) к единичным, частным событиям. Если ученого спросят о законе теплового расширения, он может сказать: «О, тепловое расширение! Это один из известных, основных фактов физики». Подобным же образом он может говорить как о факте, что тепло вызывается электрическим током, что магнетизм порождается электричеством, и т. д. Все это иногда рассматривается в качестве «фактов» физики. Чтобы избежать недоразумений, мы предпочитаем не называть такие утверждения «фактами». Факты являются единичными событиями. ()
Когда мы будем пользоваться словом «факт», мы будем понимать его в смысле единичного утверждения, чтобы ясно отличить его от утверждений универсальных. Универсальные же утверждения будут называться «законами» и в том случае, когда они столь элементарны, как закон теплового расширения, или даже еще более элементарны, как утверждение: «Все вороны — черные». Я не знаю, является ли это утверждение истинным, но, предполагая его истинным, мы будем называть такое утверждение законом зоологии. ()
Позже мы будем различать два вида законов — эмпирические и теоретические. Законы простого вида, о которых я только что упоминал, иногда называют «эмпирическими обобщениями», или «эмпирическими законами». Они являются простыми потому, что говорят о свойствах, таких, как черный цвет или магнитные свойства куска железа, которые можно наблюдать непосредственно. Например, закон теплового расширения представляет обобщение, основанное на многих непосредственных наблюдениях тел, которые расширяются при нагревании. В противоположность этому теоретические понятия или понятия о ненаблюдаемых объектах, таких, как элементарные частицы или электромагнитные поля, должны иметь отношение к теоретическим законам.
Резюмируя, можно сказать, что наука начинается с непосредственных наблюдений отдельных фактов. Конечно, регулярность не наблюдается непосредственно. Она обнаруживается только тогда, когда многие наблюдения сравниваются друг с другом. Эти регулярности выражаются с помощью утверждений, называемых «законами». ()
Никакое объяснение, то есть ничто заслуживающее почетного титула «объяснение», не может быть дано без обращения, по крайней мере к одному закону. (В простых случаях существует только один закон, но в более сложных случаях может затрагиваться совокупность многих законов.) Важно подчеркнуть этот пункт, потому что философы часто утверждают, что они могут объяснить некоторые факты в истории, природе или человеческой жизни каким-то другим способом. Они обычно делают это путем установления некоторого типа факторов или сил, которые объявляются ответственными за появление события, которое должно быть объяснено.()
В науке, как и в повседневной жизни, универсальный закон не всегда устанавливается явно. Если вы спросите физика: «Почему этот железный стержень минуту назад точно подходил к аппарату, а теперь не подходит?» — он может ответить так: «Пока вы выходили из комнаты, я нагрел его». Он предполагает, конечно, что вы знаете закон теплового расширения тел; иначе, чтобы быть понятым, он мог бы добавить: «И всякий раз, когда тело нагревается, оно расширяется». Общий закон существен для такого объяснения. Однако, если ученому известно, что вы знаете закон, тогда он может не чувствовать необходимости в том, чтобы формулировать закон. По этой причине объяснения — особенно в повседневной жизни, где законы здравого смысла принимаются как сами собой разумеющиеся.
Иногда для объяснений приходится применять законы, которые являются скорее статистическими, чем универсальными. В таких случаях мы должны ограничиваться статистическими объяснениями. Например, мы можем знать, что определенные виды грибов слегка ядовиты и вызывают некоторые болезненные симптомы в 90% случаев, когда их едят. Если врач обнаруживает эти симптомы при исследовании пациента, а пациент информирует его, что он вчера ел грибы подобного сорта, тогда врач будет рассматривать этот факт как объяснение симптомов, хотя рассматриваемый при объяснении закон является статистическим. ()
Многие физики считают, что все законы физики, в конечном счете, основываются на фундаментальных законах, которые по своему характеру являются статистическими. Если бы дело обстояло так, то мы ограничивались бы объяснениями, основывающимися на статистических законах.
Законы логики и чистой математики благодаря самой их природе не могут быть использованы в качестве основы для научного объяснения, потому что они ничего не говорят нам о том, что отличало бы действительный мир от некоторого другого возможного мира.
Когда мы требуем объяснения факта, частного наблюдения в действительном мире, мы должны использовать эмпирические законы. Они не обладают достоверностью логических и математических законов, но они говорят нам нечто о структуре мира.
В девятнадцатом веке некоторые, немецкие физики, такие, как Густав Кирхгофф и Эрнст Мах, говорили, что наука должна спрашивать не «почему?», а «как?». Они имели в виду, что наука не должна искать метафизических агентов, ответственных за некоторые события, а должна только описывать такие события в терминах законов. Такое запрещение спрашивать «почему?» должно быть понятно в его историческом плане. Его предпосылкой была немецкая философская атмосфера того времени, в которой доминировал идеализм в традиции Фихте, Шеллинга и Гегеля. Эти люди чувствовали, что описание того, как мир функционирует, было недостаточным. Они хотели более полного понимания, которое, как они верили, могло быть получено только посредством нахождения метафизических причин, стоящих за явлениями и недостижимых научным методом. Физики отвечали им следующим образом: «Не спрашивайте нас «почему?». Не существует никакого ответа, кроме того, который дают эмпирические законы».
Сейчас философская атмосфера изменилась. В Германии очень немного философов, продолжающих работать в идеалистической традиции, а в Англии и Соединенных Штатах Америки они практически исчезли. В результате мы больше не беспокоимся относительно вопросов «почему?». Мы не должны говорить «не спрашивайте нас «почему?», так как теперь, когда кто-то спрашивает «почему?», мы полагаем, что он понимает вопрос в научном, неметафизическом смысле. Он просто просит нас объяснить нечто в рамках эмпирических законов.()
Когда закон является универсальным, тогда для заключений о неизвестных фактах используется элементарная дедуктивная логика. Если закон является статистическим, мы должны использовать другую логику — логику вероятности. ()
Предсказание входит в каждый акт человеческого поведения, который включает преднамеренный выбор. Без этого как наука, так и повседневная жизнь будут невозможными...
ЭКСПЕРИМЕНТАЛЬНЫЙ МЕТОД
Одна из наиболее важных отличительных черт современной науки в сравнении с наукой раннего периода состоит в подчеркивании того, что называют «экспериментальным методом». Как мы уже видели, все эмпирическое познание, в конечном счете, основывается на наблюдениях, но эти наблюдения могут быть получены двумя существенно отличными способами. В неэкспериментальных ситуациях мы играем пассивную роль. Мы просто смотрим на звезды или на некоторые цветы, замечаем сходства и различия и пытаемся обнаружить регулярности, которые могут быть выражены как законы. В экспериментальных исследованиях мы играем активную роль. Вместо того чтобы быть случайными зрителями, мы что-то делаем для получения лучших результатов, чем те, которые мы получаем путем простого наблюдения явлений природы. Вместо того чтобы ждать, когда природа обеспечит нам ситуацию для наблюдения, мы пытаемся создать такую ситуацию. Короче, мы делаем эксперименты.
Огромный прогресс, достигнутый в физике в последние два столетия и особенно в последние несколько десятилетий, был бы невозможен без экспериментального метода. В таком случае можно спросить, почему экспериментальный метод не используется во всех областях науки?
В некоторых областях его не так легко использовать, как в физике. В астрономии, например, мы не можем сообщить планете толчок в некотором другом направлении и посмотреть, что с ней случится. Астрономические объекты вне пределов досягаемости. Мы можем только наблюдать и описывать их. Иногда астрономы могут в лаборатории создавать условия, подобные, скажем, условиям на поверхности Солнца или Луны, а затем наблюдать, что случится при этих условиях. Но в действительности это есть не астрономический, а физический эксперимент, который имеет лишь некоторое отношение к астрономическому познанию.
Совершенно другие причины препятствуют ученым в области общественных наук производить эксперименты с большими группами людей. Эти ученые производят эксперименты с группами, но обычно это малые группы людей. Если мы хотим узнать, как реагируют люди, когда они не в состоянии получить воду, мы можем взять двух или трех человек, установить им диету без жидкости и наблюдать их реакцию. Но это не покажет нам, как будут реагировать большие общины, когда будет отключено водоснабжение. Было бы интересным экспериментом — отключить водоснабжение, например, Нью-Йорка. Станут ли люди неистовствовать или сделаются апатичными? Попытаются ли они организовать революцию против городского управления? Конечно, никакой ученый в области общественных наук не будет планировать постановку такого эксперимента, потому что он знает, что общество не позволит ему этого. Люди не разрешат ученым играть их насущными нуждами.
Экспериментальный метод особенно плодотворен в тех областях, где существуют количественные понятия, которые могут быть точно измерены. Как ученый планирует эксперимент? Трудно описать общую природу эксперимента, поскольку существует так много его разновидностей, что можно указать только немногие их общие черты.
Прежде всего, мы пытаемся определить существенные факторы, относящиеся к явлению, которое хотим исследовать. Некоторые факторы — но не слишком многие — должны быть оставлены в стороне как несущественные. Например, в экспериментах в области механики, где встречаются колеса, рычаги и тому подобные, мы можем не рассматривать трение. Мы знаем, что трение существует, но полагаем, что его влияние слишком мало, чтобы оправдать усложненный эксперимент, который бы учитывал его. Подобным же образом в экспериментах с медленно движущимися телами мы можем игнорировать сопротивление воздуха. Если мы имеем дело с очень высокими скоростями, такими, как сверхзвуковая скорость снаряда, то мы не можем больше игнорировать сопротивление воздуха. Короче, ученый не принимает во внимание только те факторы, влияние которых на его эксперимент, как он полагает, будет незначительным.
Астролог может войти в лабораторию и спросить: «Вы проверили, как сегодня расположены планеты? Их положение может иметь некоторое влияние на ваш эксперимент». Мы рассматриваем это как несущественный фактор, ибо полагаем, что планеты находятся слишком далеко, чтобы оказать такое влияние.()
Практические соображения будут удерживать нас, конечно, от испытания каждого фактора, который может быть существенным. Могут быть испытаны тысячи маловероятных возможностей, но просто не будет времени, чтобы исследовать их все. ()