Становление и развитие технических наук и инженерного сообщества (вторая половина ХIХ–ХХ вв.).
Вторая половина ХIХ в. – первая половина ХХ в. Формирование системы международной и отечественной научной коммуникации в инженерной сфере: возникновение научно-технической периодики, создание научно-технических организаций и обществ, проведение съездов, конференций, выставок. Создание исследовательских комиссий, лабораторий при фирмах. Развитие высшего инженерного образования (конец ХIХ в. – начало ХХ в.).
Формирование классических технических наук: технические науки механического цикла, система теплотехнических дисциплин, система электротехнических дисциплин. Изобретение радио и создание теоретических основ радиотехники.
Разработка научных основ космонавтики. К. Э. Циолковский, Г. Гансвиндт, Ф. А. Цандер, Ю. В. Кондратюк и др.(начало 20 в.). Создание теоретических основ полета авиационных летательных аппаратов. Вклад Н. Е. Жуковского, Л. Прандтля, С. А. Чаплыгина. Развитие экспериментальных аэродинамических исследований. Создание научных основ жидкостно-ракетных двигателей. Р. Годдард (1920-е). Теория воздушно-реактивного двигателя (Б. С. Стечкин, 1929). Теория вертолета: Б. Н. Юрьев, И. И. Сикорский, С. К. Джевецкий. Отечественные школы самолетостроения: Поликарпов, Илюшин, Туполев, Лавочкин, Яковлев, Микоян, Сухой и др. Развитие сверхзвуковой аэродинамики.
А. Н. Крылов (1863-1945) - основатель школы отечественного кораблестроения. Опытовый бассейн в г. Санкт-Петербурге как исследовательская морская лаборатория.
Завершение классической теории сопротивления материалов в начале ХХ в. Становление механики разрушения и развитие атомистических взглядов на прочность. Сетчатые гиперболоидные конструкции В. Г. Шухова (начало XX в.). Исследование устойчивости сооружений.
Развитие научных основ теплотехники. Термодинамические циклы: У. Ранкин(1859), Н. Отто (1878), Дизель (1893), Брайтон (1906). Клаузиус, У. Ранкин, Г. Цейнери: формирование теории паровых двигателей. Г. Лаваль, Ч. Парсонс, К. Рато, Ч. Кёртис: создание научных основ расчета паровых турбин. Крупнейшие представители отечественной теплотехнической школы (вторая половина Х1Х – первая треть ХХ в.): И. П. Алымов, И. А. Вышнеградский , А. П. Гавриленко, А. В. Гадолин, В. И. Гриневецкий, Г. Ф. Депп, М. В. Кирпичев, К. В. Кирш, А. А. Радциг, Л. К. Рамзин, В. Г. Шухов. Развитие научно-технических основ горения и газификации топлива. Становление теории тепловых электростанций (ТЭС) как комплексной расчетно-прикладной дисциплины. Вклад в развитие теории ТЭС: Л. И. Керцелли, Г. И. Петелина, Я. М. Рубинштейна, В. Я. Рыжкина, Б. М. Якуба и др.
Развитие теории механизмов и машин. “Принципы механизма” Р. Виллиса (1870) и “Теоретическая кинематика” Ф. Рело (1875), Германия. Петербургская школа машиноведения 1860 – 1880 гг. Вклад П. Л. Чебышева в аналитическое решение задач по теории механизмов. Труды М. В. Остроградского. Создание теории шарнирных механизмов. Работы П. О. Сомова, Н. Б. Делоне, В. Н. Лигина, Х. И. Гохмана. Работы Н. Е. Жуковского по прикладной механике. Труды Н.И Мерцалова по динамике механизмов, Л. В. Ассура по классификации механизмов. Вклад И. А. Вышнеградского в теоретические основы машиностроения, теорию автоматического регулирования, создание отечественной школы машиностроения. Формирование конструкторско-технологического направления изучения машин. Создание курса по расчету и проектированию деталей и узлов машин – “детали машин”: К Бах (Германия), А. И Сидоров (Россия, МВТУ). Разработка гидродинамическая теории трения: Н. П. Петров. Создание теории технологических (рабочих ) машин. В. П. Горячкин “Земледельческая механика” (1919). Развитие машиноведения и механики машин в работах П. К. Худякова, С. П. Тимошенко, С. А. Чаплыгина, Е. А. Чудакова, В. В. Добровольского, И. А. Артоболевского, А. И. Целикова и др.
Становление технических наук электротехнического цикла. Открытия, эксперименты, исследования в физике (А. Вольта, А. Ампер, Х. Эрстед, М. Фарадей, Г. Ом и др.) и возникновение изобретательской деятельности в электротехнике. Э. Х. Ленц: принцип обратимости электрических машин, закон выделения тепла в проводнике с током Ленца – Джоуля. Создание основ физико-математического описания процессов в электрических цепях: Г. Кирхгоф, Г. Гельмгольц, В. Томсон (1845–1847 гг.). Дж. Гопкинсон: разработка представления о магнитной цепи машины (1886). Теоретическая разработка проблемы передачи энергии на расстояние: В. Томсон, В. Айртон, Д. А. Лачинов, М. Депре, О. Фрелих и др. Создание теории переменного тока. Т. Блекслей (1889), Г. Капп, А. Гейланд и др.: разработка метода векторных диаграмм (1889). Вклад М. О. Доливо – Добровольского в теорию трехфазного тока. Возникновение теории вращающихся полей, теории симметричных составляющих. Ч. П. Штейнметц и метод комплексных величин для цепей переменного тока (1893–1897). Формирование схем замещения. Развитие теории переходных процессов. О. Хевисайд и введение в электротехнику операционного исчисления. Формирование теоретических основ электротехники как научной и базовой учебной дисциплины. Прикладная теория поля. Методы топологии Г. Крона, матричный и тензорный анализ в теории электрических машин. Становление теории электрических цепей как фундаментальной технической теории (1930-е гг.).
Создание научных основ радиотехники. Возникновение радиоэлектроники. Теория действующей высоты и сопротивления излучения антенн Р. Рюденберга — М. В .Шулейкина (1910-е – начало 1920-х гг.). Коэффициент направленного действия антенн (1929 г. — А. А. Пистолькорс). Расчет многовибраторных антенн (В. .В. Татаринов, 1930-е гг.). Работы А. Л. Минца по схемам мощных радиопередатчиков. Расчет усилителя мощности в перенапряженном режиме (А. Берг, 1930-е гг.). Принцип фазовой фокусировки электронных потоков для генерирования СВЧ (Д. Рожанский, 1932). Теория полых резонаторов (1939 г. – М. С. Нейман). Статистическая теория помехоустойчивого приема (1946 г. – В. А. Котельников), теория помехоустойчивого кодирования (1948 г. – К. Шеннон). Становление научных основ радиолокации.
Математизация технических наук. Формирование к середине ХХ в. фундаментальных разделов технических наук: теория цепей, теории двухполюсников и четырехполюсников, теория колебаний и др. Появление теоретических представлений и методов расчета, общих для фундаментальных разделов различных технических наук. Физическое и математическое моделирование.
Эволюция технические наук во второй половине ХХ в. Системно-интегративные тенденции в современной науке и технике.
Масштабные научно-технические проекты (освоение атомной энергии, создание ракетно-космической техники). Проектирование больших технических систем. Формирование системы “фундаментальные исследования – прикладные исследования – разработки”.
Развитие прикладной ядерной физики и реализация советского атомного проекта, становление атомной энергетики и атомной промышленности. Вклад И В Курчатова, А. П. Александрова, Н. А. Доллежаля, Ю. Б. Харитона др. Новые области научно-технических знаний. Развитие ядерного приборостроения и его научных основ. Создание искусственных материалов, становление теоретического и экспериментального материаловедения Появление новых технологий и технологических дисциплин.
Развитие полупроводниковой техники, микроэлектроники и средств обработки информации. Зарождение квантовой электроники: принцип действия молекулярного генератора (1954 – Н. Г. Басов, А. М. Прохоров, Ч. Таунс, Дж. Гордон, Х. Цейгер) и оптического квантового генератора (1958–1960 гг. – А. М. Прохоров, Т. Мейман). Развитие теоретических принципов лазерной техники. Разработка проблем волоконной оптики
Научное обеспечение пилотируемых космических полетов (1960–1970 гг.). Вклад в решение научно-технических проблем освоения космического пространства С. П. Королева, М. В. Келдыша, Микулина, В. П. Глушко, В. П. Мишина, Б. В. Раушенбаха и др.
Проблемы автоматизации и управления в сложных технических системах. От теории автоматического регулирования к теории автоматического управления и кибернетике (Н. Винер). Развитие средств и систем обработки информации и создание теории информации (К. Шеннон). Статистическая теория радиолокации. Системно - кибернетические представления в технических науках.
Смена поколений ЭВМ и новые методы исследования в технических науках. Решение прикладных задач на ЭВМ. Развитие вычислительной математики Машинный эксперимент. Теория оптимизационных задач и методы их численного решения. Имитационное моделирование.
Компьютеризация инженерной деятельности Развитие информационных технологий и автоматизация проектирования. Создание интерактивных графических систем проектирования (И. Сазерленд, 1963). Первые программы анализа электронных схем и проектирования печатных плат, созданные в США и СССР (1962–1965). Системы автоматизированного проектирования, удостоенные государственных премий СССР (1974, 1975).
Исследование и проектирование сложных “человеко-машинных” систем: системный анализ и системотехника, эргономика и инженерная психология, техническая эстетика и дизайн. Образование комплексных научно-технических дисциплин. Экологизация техники и технических наук. Проблема оценки воздействия техники на окружающую среду. Инженерная экология.
Вопросы кандидатского экзамена
- Наука в культуре современной цивилизации. Три аспекта бытия науки: наука как генерация нового знания, как социальный институт, как особая сфера культуры.
- Традиционалистский и техногенный типы цивилизационного развития и их базисные ценности. Ценность научной рациональности.
- Наука и философия. Наука и искусство. Роль науки в современном образовании и формировании личности.
- Функции науки в жизни общества (наука как мировоззрение, как производительная и социальная сила).
- Определение понятия «наука».
- Логико-эпистемологический подход к исследованию науки. Позитивистская традиция в философии науки.
- Расширение поля философской проблематики в постпозитивистской философии науки. Концепции К. Поппера, И. Лакатоса, Т.Куна, П.Фейерабенда, М.Полани.
- Социологический и культурологический подходы к исследованию развитии науки. Проблема интернализма и экстернализма в понимании механизмов научной деятельности. Концепции М. Вебера, А.Койре, Р. Мертона, М.Малкея.
- Восточная преднаука.
- Генезис науки. Античная наука.
- Наука в Средние века.
- Наука эпохи Возрождения. Первая научная революция.
- Наука Нового времени 17 в.
- Рождение классической науки.
- Наука в эпоху Просвещения 18.в
- Особенности развития науки в 19 в.
- Понятие «научная революция». Проблемы типологии научных революций.
- Союз науки и философии в рамках марксистской философии.
- Становление социальных и гуманитарных наук.
- Структура научного знания: эмпирический уровень научного знания.
- Структура научного знания: теоретический уровень научного знания.
- Основания науки. Философские основания науки.
- Метатеоретический уровень научного знания.
- Неклассическая наука: общая характеристика.
- Селективная роль культурных традиций в выборе стратегий научного развития. Проблема потенциально возможных историй науки.
- Исторические типы научной рациональности.
- Постнеклассическая наука: общая хараетеристика.
- Достижения и противоречия научно-технического прогресса.
- Наука и ненаучное знание.
- Традиции и новации в науке.
- Новые этические проблемы науки в конце XX столетия.
- Проблема гуманитарного контроля в науке и высоких технологиях.
- Экологическая и социально-гуманитарная экспертиза научно-технических проектов.
- Кризис идеала ценностно-нейтрального исследования и проблема идеологизированной науки.
- Экологическая этика и ее философские основания.
- Философия русского космизма и учение В.И. Вернадского о биосфере, техносфере и ноосфере.
- Проблемы экологической этики в современной западной философии.
- Сциентизм и антисциентизм в современной культуре.
- Поиск нового типа цивилизационного развития и новые функции науки в культуре.
- Роль науки в преодолении современных глобальных кризисов.
- Наука как социальный институт. Различные подходы к определению социального института науки.
- Подготовка научных кадров: достижения, проблемы, тенденции. Научные школы.
- Наука и экономика.
- Историческое развитие институциональных форм научной деятельности. Научные сообщества и их исторические типы (республика ученых 17 века; научные сообщества эпохи дисциплинарно организованной науки; формирование междисциплинарных сообществ науки XX столетия).
- Историческое развитие способов трансляции научных знаний (от рукописных изданий до современного компьютера).
- Компьютеризация науки и ее социальные последствия.
- Наука и власть. Проблема государственного регулирования науки.
- Философия техники и технических наук (философские проблемы техники).
- Философия техники и методология технических наук.
- Техника как предмет исследования естествознания.
- Естественные и технические науки.
- Особенности неклассических научно-технических дисциплин.
- Социальная оценка техники как прикладная философия техники.
- Философия техники и технических наук (философские проблемы информатики).
- История становления информатики как междисциплинарного направления во второй половине ХХ века.
- Информатика как междисциплинарная наука о функционировании и развитии информационно-коммуникативной среды и ее технологизации посредством компьютерной техники.
- Интернет как метафора глобального мозга.
- Эпистемологическое содержание компьютерной революции.
- Социальная информатика.
- История технических наук.
- Техника и наука как составляющие цивилизационного процесса.
- Смена социокультурной парадигмы развития техники и науки в Новое время.
- Становление и развитие технических наук и инженерного сообщества (вторая половина ХIХ–ХХ вв.).