Уровни энергии возбужденного ядра и их характеристики.
Возбуждение ядра – сообщение ядру дополнительной энергии, в результате чего увеличивается его внутренняя энергия, и ядро переходит из основного состояния в возбужденное. Ядро является квантовой системой взаимодействующих нуклонов и имеет строго определенный и дискретный набор разрешенных энергетических состояний. Наименьшее количество энергии, которое может поглотить ядро, соответствует его первому возбужденному уровню. Уровни возбуждения бывают одночастичными и коллективными. Возбуждение легких ядер на нижние энергетические уровни обусловлены переходом одного из нуклона в ближайшее незанятое состояние с большей энергией. Такие уровни называются одночастичными. Для тяжелых ядер переход на нижние уровни возбуждения обусловлен обычно вращением ядра (несферические ядра могут вращаться), а на более высокие уровни связан с возбуждением периодических колебаний плотности ядра (без изменения формы) или же с колебанием формы ядра. Уровни подобного свойства называются коллективными, так как вызваны коллективным взаимодействием нуклонов в ядре. Многие из уровней имеют сложную смешанную природу.
На рис.1.7.1 изображены типичные схемы возбужденных уровней легкого и тяжелого ядер. Система энергетических уровней ядра называется энергетическим спектром ядра. Энергия каждого уровня обозначается слева, а спин и четность (см. §1.8) данного состояния справа. Совокупность значений этих величин называется характеристикой уровня. Первый возбужденный уровень E1 легких ядер (А < 50) расположен при энергии ~ 1 МэВ, у тяжелых (А > 200) ~ 0,1 МэВ. Спины ядер в возбужденных состояниях могут отличаться от спинов в основном состоянии, поскольку спин ядра зависит не только от спина нуклонов но и от их внутреннего движения (орбитальных моментов).
Взаимодействие гамма-излучения с веществом.
При радиоактивном распаде, ядра испускают гамма – кванты с энергией в пределах от нескольких кэВ до нескольких МэВ. Гамма – кванты при прохождении через вещество теряют энергию практически за счет трёх эффектов: фотоэлектрического поглощения (фотоэффект), комптоновского рассеивания (комптон- эффект), образования электронно-позитронных пар (образование пар). Величина каждого эффекта зависит от атомного номера поглощающего материала и энергии фотона.
Эффект Мессбауэра.
Эффект Мёссбауэра или ядерный гамма-резонанс, состоит в резонансном испускании или поглощении гамма-фотонов без изменения фононного спектра излучателя или поглотителя излучения соответственно. Иными словами, эффект Мёссбауэра — это резонансное испускание и поглощение гамма-лучей без отдачи. Имеет существенно квантовую природу и наблюдается при изучении кристаллических, аморфных и порошковых образцов, содержащих один из 87 изотопов 46 элементов.
Природа эффекта
При испускании или поглощении гамма-кванта, согласно закону сохранения импульса, свободное ядро массы M получает импульс отдачи p = E0/c и соответствующую этому импульсу энергию отдачи R = p2/(2M). На эту же величину оказывается меньше по сравнению с разностью энергий между ядерными уровнями E0 энергия испущенного гамма-кванта, а резонансное поглощение наблюдается для фотонов с энергией, равной E0 + R. В итоге, для одинаковых ядер линии испускания и поглощения разнесены на величину 2R и условие резонанса может быть выполнено только в случае совмещения этих линий, либо их частичного перекрытия. В газахэнергию отдачи получает одно излучающее ядро массы M, тогда как в твёрдых телах помимо процессов, когда за счёт энергии отдачи возбуждаются фононы, при определённых условиях смещение только одного атома или небольшой группы атомов становится невозможным, и отдачу может испытать лишь весь кристалл целиком. Масса кристалла на много порядков больше массы ядра, а значит и величина R становится пренебрежимо малой. В процессах испускания и поглощения гамма-квантов без отдачи энергии фотонов равны с точностью до естественной ширины спектральной линии.
Выделение и поглощение энергии в ядерных взаимодействиях. Примеры.
Ядерными реакциями называют превращение одних ядер в другие при взаимодействии с какими-то частицами.
В начале развития ядерной физики учёные располагали лишь одним «орудием» для «разбития» ядра – это альфа-частицы, которые при радиоактивном распаде излучали радиоактивные препараты.
Первая ядерная реакция была осуществлена Резерфордом. Он бомбардировал атомы азота α-частицами, в результате получался кислород и вылетал протон.
Джеймс Чедвик при бомбардировке α-частицами бериллия обнаружил, что из ядра бериллия вылетает нейтрон и получается ядро углерода.
Однако α-частицы не всегда способны разбить ядро, так как они также обладают положительным зарядом и, при определённых условиях, электрическое отталкивание со стороны ядра настолько большое, что α-частица не сможет с ним столкнуться.
Впервые ускоренный протон использовали для взаимодействия с ядром лития , при этом ядро разбивалось на две α-частицы (два ядра гелия).
Данная реакция имела большой энергетический выход, около . Ещё больше энергии выделилось при реакции, в которой разогнанный ускорителем дейтрон попал в ядро лития и также разбил его на два ядра гелия.
Характерной особенностью ядерных реакций является выполнение законов сохранения. То есть сумма зарядовых чисел до реакции должна быть равна сумме зарядовых чисел после реакции. Также выполняется закон сохранения массового числа. Однако масса ядер, которые вошли в реакцию, не равны массе ядер, которые вышли из реакции.