Структурные схемы ХРД и НХРД приведены на рис
ХРД НХРД
(химический ракетный двигатель) (нехимический ракетный двигатель)
Требования, предъявляемые к камерам ЖРД
Камера ЖРД любого типа и конструкции должна удовлетворять определенным требованиям, обусловленным особенностями ее работы и эксплуатации.
Основными особенностями камеры ЖРД отличающими ее от камер сгорания других тепловых двигателей, являются:
1. высокая теплонапряженность ее рабочего объема, что предъявляет особые требования к конструкции камеры сгорания;
2. большие давления и температуры газов в ней (около 20-80 ата и 2800-3600 К), что предъявляет особые требования к материалам и к системе охлаждения;
3. малое время, отводимое для сгорания в ней топлива (не больше 0,005 сек.), что требует очень хорошего распыла компонентов топлива при подаче в камеру сгорания для более полного их сгорания;
4. большие секундные расходы компонентов топлива, в силу чего требуется надежное зажигание его при запуске двигателя;
5. резкое ухудшение экономичности работы камеры двигателя и условий ее охлаждения при изменении режима работы относительно расчетного;
6. жёсткое ограничение по весу, вследствие специфики использования ЖРД на летательных аппаратах, что требует применения для изготовления камеры легких и прочных материалов при условии их работы с весьма малыми запасами прочности.
Главной задачей при проектировании и конструировании камеры двигателя является обеспечение возможно большего удельного импульса при минимальном весе и максимальной надежности конструкции. В ряде случаев, когда это компенсируется соответствующим уменьшением веса, вполне допустимо некоторое снижение удельного импульса. Хотя такое мероприятие дает косвенный эффект и связано иногда со значительным изменением конструкции двигателя, но тем не менее им не следует пренебрегать.
Конструктивные и эксплуатационные особенности ЖРД во многом зависят от вида применяемых компонентов топлива.
При проектировании камеры двигателя необходимо стремиться обеспечить:
1. надежное воспламенение топлива при запуске в любых атмосферных условиях;
2. устойчивое горение топлива (без пульсаций давления) в диапазоне установленных режимов работы двигателя;
3. малые потери энергии топлива при сгорании в минимальном объеме и заданном режиме работы двигателя;
4. надежность охлаждения (если двигатель охлаждаемый) и работы в пределах установленных режимов и ресурса;
5. небольшой перепад давления жидкости в охлаждающем тракте;
6. простоту конструкции камеры, минимальные удельный вес и стоимость.
Камеры ЖРД существующих двигателей, созданные на основании экспериментальных исследований, большинству этих требований в значительной мере удовлетворяют.
Совершенство камеры ЖРД в основном определяется величиной развиваемого удельного импульса при простой, легкой и надежной конструкции. Величина удельного импульса двигателя является наиболее существенным параметром, определяющим дальность полета боевого аппарата при заданном совершенстве его конструктивного выполнения.
Основным фактором, влияющим на величину удельного импульса камеры двигателя, является качество организации и осуществления в ней рабочего процесса. Изучение процессов сгорания топлива в камерах ЖРД с целью дальнейшего их улучшения и совершенствования представляет весьма обширную область экспериментальных и теоретических исследований.
Для совершенствования конструкции камеры двигателя необходимы дальнейшие исследования процессов сгорания в ней заданных топлив при различных соотношениях компонентов и давлениях горения в зависимости от конструкций распыляющего устройства, скоростей впрыска компонентов топлива, конфигурации камеры сгорания и сопла, а также других факторов и условий работы двигателя.
Выбор материала для камеры ЖРД
Материал камеры двигателя должен быть по возможности более прочным, легким и обладать хорошими пластическими свойствами. Для материала внутренней оболочки желательно сочетание высокой теплопроводности и удовлетворительных прочностных свойств при высоких температурах, однако, как правило, жаропрочные сплавы имеют плохую теплопроводность. Для внешней оболочки теплопроводность большого значения не имеет и поэтому МПЧ главным требованием к материалу является его высокая прочность и возможно меньшая плотность. В некоторых случаях, при высокотеплопроводных скреплениях, температура наружной оболочки может достигать 300-400°С и тогда материал должен обладать достаточно хорошей жаропрочностью.
Кроме того, в зависимости от типа конструкции и применяемых компонентов, материал должен удовлетворять условиям свариваемости, кислотостойкости и не являться катализатором.
Основные рекомендации по выбору конструкционных материалов при производстве камер ЖРД представлены ниже:
Сталь 12Х18НЮТ применяется для внутренних оболочек цилиндрической и сужающейся части камер при температуре газа менее 3000 К, а также для внутренней оболочки расширяющихся частей сопел.
Сталь 12Х18Н9Т в настоящее время не рекомендуется для внутренних оболочек камер из-за склонности к межкристаллической коррозии.
Сталь 1X21Н5Т целесообразно применять для выполнения силовых колец камер, т.к. она не требует термообработки после сварки.
Кроме того, сталь 1X21Н5Т хорошо сваривается с бронзой, и поэтому может использоваться в качестве промежуточного кольца при сварке внутренних оболочек из стали 12Х18Н1ОТ и бронзы типа БрХ-08. Сталь 1Х21Н5Т рекомендуется также для изготовления наружных оболочек расширяющихся частей сопел. Эта сталь при температуре пайки обладает высокой пластичностью, что обеспечивает хороший контакт со связями и высокое качество пайки узлов сложной формы.
Сталь Х16Н4БА используется для изготовления наружной оболочки цилиндрической и сужающейся частей камеры двигателя, т.к. при температуре более 500 К она обладает высокими механическими характеристиками.
Титановые сплавы применяются для изготовления наружной и внутренней оболочек расширяющейся части сопел, работающих в восстановительной среде. Для окислительной среды титановые сплавы применять не рекомендуется, т.к. они могут возгораться из-за растрескивания окисной плёнки.
Медные сплавы используются для изготовления внутреннего днища и внутренних оболочек цилиндрической части камеры и суживающейся части сопла в двигателях с высоким давлением в камере (более 10 Мпа).
Формы камер ЖРД
Камера двигателя является главным агрегатом ракетной двигательной установки.
Различают изобарические и скоростные камеры сгорания. Камеры сгорания с приблизительно постоянным по длине давлением иногда называются изобарическими камерами. К ним следует относить камеры, у которых FK/F*>3
Отношение FK/F*, называют обычно безразмерной площадью камеры сгорания. Если значение FK/F* < 3, то при сгорании в камере скорость потока
значительно возрастает по её длине, в то время как давление, согласно уравнению закона сохранения энергии, падает. Такие камеры сгорания уже нельзя относить к изобарическим; их называют скоростными. В пределе FK/F*=1 камеры двигателя носят название полутеплового сопла.
Известны следующие основные формы камер сгорания ЖРД рис.31.
1.Цилиндрическая.
2.Шарообразная (или грушевидная).
3.Коническая.
4.Кольцевая (торовая, цилиндрическая).
Рассмотрим особенности каждой из этих форм.
В настоящее время наиболее распространены цилиндрические камеры сгорания. Они применяются для камер двигателей всех тяг.
Основным достоинством цилиндрической камеры сгорания по сравнению с камерами сгорания других форм является простота ее конструкции и изготовления а, следовательно, малая стоимость. Кроме того, она имеет меньший габаритный диаметр.
Рис.31
Формы камер сгорания: