Глава 32 Элементы физики атомного ядра
Глава 32 Элементы физики атомного ядра
Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
Э. Резерфорд, исследуя прохождение α-частиц с энергией в несколько мегаэлектрон-вольт через тонкие пленки золота (см. § 208), пришел к выводу о том, что атом состоит из положительно заряженного ядра и окружающих его электронов. Проанализировав эти опыты, Резерфорд также показал, что атомные ядра имеют размеры примерно 10-14-10-15 м (линейные размеры атома примерно 10-10 м).
Атомное ядро состоит из элементарных частиц —протонов и нейтронов (протонно-нейтронная модель ядра была предложена российским физиком Д. Д. Иваненко (р. 1904), а впоследствии развита В. Гейзенбергом).
Протон (р) имеет положительный заряд, равный заряду электрона, и массу покоя mр= 1,6726 · 10-27 кг≈ 1836 me, где me— масса электрона. Нейтрон (n) — нейтральная частица с массой покоя mn = 1,6749 ∙ 10 -27 кг ≈ 1839me. Протоны и нейтроны называютсянуклонами (от лат. nucleus — ядро). Общее число нуклонов в атомном ядре называетсямассовым числом А.
Атомное ядро характеризуетсязарядом Zе, гдеZ —зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева. Известные в настоящее время 107 элементов таблицы Менделеева имеют зарядовые числа ядер от Z= 1 до Z= 107.
Ядро обозначается тем же символом, что и нейтральный атом: AZX где Х — символ химического элемента, Z — атомный номер (число протонов в ядре), А — массовое число (число нуклонов в ядре).
Сейчас протонно-нейтронная модель ядра не вызывает сомнений. Рассматривалась также гипотеза о протонно-электронном строении ядра, но она не выдержала экспериментальной проверки. Так, если придерживаться этой гипотезы, то массовое число А должно представлять собой число протонов в ядре, а разность между массовым числом и числом электронов должна быть равна зарядовому числу. Эта модель согласовывалась со значениями изотопных масс и зарядов, но противоречила значениям спинов и магнитных моментов ядер, энергии связи ядра и т. д. Кроме того, она оказалась несовместимой с соотношением неопределенностей (см. § 215). В результате гипотеза о протонно-электронном строении ядра была отвергнута.
Так как атом нейтрален, то заряд ядра определяет и число электронов в атоме. От числа же электронов зависит их распределение по состояниям в атоме, от которого, в свою очередь, зависят химические свойства атома. Следовательно, заряд ядра определяет специфику данного химического элемента, т. е. определяет число электронов в атоме, конфигурацию их электронных оболочек, величину и характер внутриатомного электрического поля.
Ядра с одинаковыми Z., но разными А (т. е. с разными числами нейтронов N=A—Z) называются изотопами —, а ядра с одинаковыми А, но разными Z—изоборами. Например, водород (Z==1) имеет три изотопа: 11Н—протай (Z=1, N=0), 21Н — дейтерий (Z= 1, N= 1), 31Н — тритий (Z= 1, N=2), олово — десять, и т. д. В подавляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и почти одинаковыми физическими свойствами (исключение составляют, например, изотопы водорода), определяющимися в основном структурой электронных оболочек, которая является одинаковой для всех изотопов данного элемента. Примером ядер-изобар могут служить ядра 104Ве, 105В, 106С. В настоящее время известно более 2500 ядер, отличающихся либо Z, либо А, либо тем и другим.
Радаиус ядра задается эмпирической формулой
, (251.1)
где Ro=(1,3÷1,7)10-15 м. Однако при употреблении этого понятия необходимо соблюдать осторожность (из-за его неоднозначности, например из-за размытости границы ядра). Из формулы (251.1) вытекает, что объем ядра пропорционален числу нуклонов в ядре. Следовательно, плотность ядерного вещества примерно одинакова для всех ядер (≈1017 кг/м3).
Ядерные силы. Модели ядре
Между составляющими ядро нуклонами действуют особые, специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются ядерными силами.
С помощью экспериментальных данных по рассеянию нуклонов на ядрах, ядерным превращениям и т. д. доказано, что ядерные силы намного превышают гравитационные, электрические и магнитные взаимодействия и не сводятся к ним. Ядерные силы относятся к классу так называемых сильных взаимодействий.
Перечислим основные свойства ядерных сад:
1) ядерные силы являются силами притяжения;
2) ядерные силы являются короткодействующими — их действие проявляется только на расстояниях примерно 10-15 м. При увеличении расстояния между нуклонами ядерные силы быстро уменьшаются до нуля, а при расстояниях, меньших их радиуса действия, оказываются примерно в 100 раз больше кулоновских сил, действующих между протонами на том же расстоянии;
3) ядерным силам свойственна зарядовая независимость: ядерные силы, действующие между двумя протонами, или двумя нейтронами, или, наконец, между протоном и нейтроном, одинаковы по величине. Отсюда следует, что ядерные силы имеют везлектричесхую природу;
4) ядерным силам свойственно насыщение, т. е. уажд^ нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов. Насыщение проявляется в том, что удельная энергия связи нуклонов в ядре (если не учитывать легкие ядра) при увеличении числа нуклонов не растет, а остается приблизительно постоянной;
5) ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов. Например, протон и нейтрон образуют дейтрон (ядро изотопа 21Н) только при условии параллельной ориентацииих спинов;
6) ядерные силы не являются центральными, г. е. действующими по линии, соединяющей центры взаимодействующих нуклонов.
Сложный характер ядерных сил и трудность точного решения уравнений движения всех нуклонов ядра (ядро с массовым числом А представляет собой систему из А тел) не позволили до настоящего времени разработать единую последовательную теорию атомного ядра. Поэтому на данной стадии прибегают к рассмотрению приближенных ядерных моделей, в которых ядро заменяется некоторой модельной системой, довольно хорошо описывающей только определенные свойства ядра и допускающей более или менее простую математическую трактовку. Из большого числа моделей, каждая из которых обязательно использует подобранные произвольные параметры, согласующиеся с экспериментом, рассмотрим две:капельную оболочечную.
1. Капельная модель ядра (1936; И. Бор и Я. И. Френкель). Капельная модель ядра является первой моделью. Она основана на аналогии между поведением нуклонов в ядре и поведением молекул в капле жидкости. Так, в обоих случаях силы, действующие между составными частицами — молекулами в жидкости и нуклонами в ядре, — являются короткодействующими и им свойственно насыщение. Для капли жидкости при данных внешних условиях характерна постоянная плотность ее вещества. Ядра же характеризуются практически постоянной удельной энергией связи и постоянной плотностью, не зависящей от числа нуклонов в ядре. Наконец, объем капли, так же как и объем ядра (см. (251.1)), пропорционален числу частиц. Существенное отличие ядра от капли жидкости в этой модели заключается в том, что она трактует ядро как каплю электрически заряженной несжимаемой жидкости (с плотностью, равной ядерной), подчиняющуюся законам квантовой механики. Капельная модель ядра позволила получить полуэмпирическую формулу для энергии связи нуклонов в ядре, объяснила механизм ядерных реакций и особенно реакции деления ядер. Однако эта модель не смогла, например, объяснить повышенную устойчивость ядер, содержащих магические числа протонов и нейтронов.
2. Оболочечная модель ядра (1949—1950; американский физик М. Гспперт-Майер (1906-1975) и немецкий физик X. Иенсен (1907—1973)). Оболочечная модель предполагает распределение нуклонов в ядре по дискретным энергетическим уровням (оболочкам), заполняемым нуклонами согласно принципу Паули, и связывает устойчивость ядер с заполнением этих уровней. Считается, что ядра с полностью заполненными оболочками являются наиболее устойчивыми. Такие особо устойчивые (магические) ядра действительно существуют (см. § 252).
Оболочечная модель ядра позволила объяснить спины и магнитные моменты ядер, различную устойчивость атомных ядер, а также периодичность изменений их свойств. Эта модель особенно хорошо применима для описания легких и средних ядер, а также для ядер, находящихся в основном (невозбуждённом) состоянии.
По мере дальнейшего накопления экспериментальных данных о свойствах атомных ядер появлялись все новые факты, не укладывающиеся в рамки описанных моделей. Так возникли обобщенная модель ядра (синтез капельной и оболочечной моделей), оптическая модель ядра (объясняет взаимодействие ядер с налетающими частицами) и другие модели.
Рис. 343
электронами и антинейтрино, причем сумма энергий обеих частиц равна Еmax. В одних актах распада большую энергию получает антинейтрино, в других — электрон; в граничной точке кривой на рис. 343, где энергия электрона равна Еmax вся энергия распада уносится электроном, а энергия антинейтрино равна нулю.
Наконец, рассмотрим вопрос о происхождении электронов при β--распаде. Поскольку электрон не вылетает из ядра и не вырывается из оболочки атома, было сделано предположение, что
β-электрон рождается в результате процессов, происходящих внутри ядра. Так как при
β--распаде число нуклонов в ядре не изменяется, а Z увеличивается на единицу (см. (265.5)), то единственной возможностью одновременного осуществления этих условий является превращение одного из нейтронов β- активного ядра в протон с одновременным образованием электрона и вылетом антинейтрино:
(258.1)
В этом процессе выполняются законы сохранения электрических зарядов, импульса и массовых чисел. Кроме того, данное превращение энергетически возможно, так как масса покоя нейтрона превышает массу атома водорода, т. е. протона и электрона вместе взятых. Данной разности в массах соответствует энергия, равная 0,782 МэВ. За счет этой энергии может происходить самопроизвольное превращение нейтрона в протон; энергия распределяется между электроном и антинейтрино.
Если превращение нейтрона в протон энергетически выгодно и вообще возможно, то должен наблюдаться радиоактивный распад свободных нейтронов (т.e.. нейтронов вне ядра). Обнаружение этого явления было бы подтверждением изложенной теории β--распада. Действительно, в 1950 г. в потоках нейтронов большой интенсивности, возникающих в ядерных реакторах, был обнаружен радиоактивный распад свободных нейтронов, происходящий по схеме (258.1). Энергетический спектр возникающих при этом электронов соответствовал приведенному на рис. 343, а верхняя граница энергии электронов Еmax оказалась равной рассчитанной выше (0,782 МэВ).
Рис. 344
19177Ir (с понижением температуры колебания решетки «замораживаются»), а впоследствии обнаружен более чем на 20 стабильных изотопах (например, 57Fe, 67Zn).
Мёссбауэр вооружил экспериментальную физику новым методом измерений невиданной прежде точности. Эффект Мёссбауэра позволяет измерять энергии (частоты) излучения с относительной точностью Г/Е = 10-15÷10-17, поэтому во многих областях науки и техники может служить тончайшим «инструментом» различного рода измерений. Появилась возможность измерять тончайшие детали γ -линий, внутренние магнитные и электрические поля в твердых телах и т. д.
Внешнее воздействие (например, зеемановское расщепление ядерных уровней или смещение энергии фотонов при движении в поле тяжести) может привести к очень малому смещению либо линии поглощения, либо линии излучения, иными словами, привести к ослаблению или исчезновению эффекта Мёссбауэра. Это смещение, следовательно, может быть зафиксировано. Подобным образом в лабораторных условиях был обнаружен (1960) такой тончайший эффект, как «гравитационное красное смещение», предсказанный общей теорией относительности Эйнштейна.
Открытие нейтрона. Ядерные реакции под действием нейтронов
Нейтроны, являясь электрически нейтральными частицами, не испытывают кулоновского отталкивания и поэтому легко проникают в ядра и вызывают разнообразные ядерные превращения. Изучение ядерных реакций под действием нейтронов не только сыграло огромную роль в развитии ядерной физики, но и привело к появлению ядерных реакторов (см. § 267).
Краткая история открытия нейтрона такова. Немецкие физики В. Боте1891—1957) и Г. Беккер в 1930 г., облучая рад элементов, в частности ядра бериллия,
α-частицами, обнаружили возникновение излучения очень большой проникающей способности. Так как сильно проникающими могут быть только нейтральные частицы, то было высказано предположение, что обнаруженное излучение — жесткие γ-лучи с энергией примерно 7 МэВ (энергия рассчитана по поглощению). Дальнейшие эксперименты (Ирен и Фредерик Жолио-Кюри, 1931 г.) показали, что обнаруженное излучение, взаимодействуя с водородосодержащими соединениями, например парафином, выбивает протоны с пробегами примерно 26 см. Из расчетов следовало, что для получения протонов с такими пробстами предполагаемые γ-кванты должны были обладать. фантастической по тем временам энергией 50 МэВ вместо расчетных 7 МэВ!
Пытаясь найти объяснение описанным экспериментам, английский физик Д. Чэдвик (1891—1974) предположил (1932), а впоследствии доказал, что новое проникающее излучение представляет собой ив γ -кванты, а поток тяжелых нейтральных частиц, названных им —тупиц—. Таким образом, нейтроны были обнаружены в следующей ядерной реакции:
Эта реакция не является единственной, ведущей к выбрасыванию из ядер нейтронов (например, нейтроны возникают в реакциях 73Li (α,n) 105B и 115B (α,n) 147N).
Характер ядерных реакций под действием нейтронов зависит от их скорости (энергии). В зависимости от энергии нейтроны условно делят на две группы:медленные и быстрые. Область энергий медленных нейтронов включает в себя областьультрахолодных (с энергией до 10-7 эВ),очень холодных (10-7 - 10-4 эВ),холодных(10-4 — 10-3 эВ),тепловых (10-3 - 0,5 эВ) ирезонансных (0,5 - 104 эВ) нейтронов. Ко второй группе можно отнестибыстрые (104 — 108 эВ),высокоэнергетичные(108 — 1010 эВ)и релятивистские (≥ 1010 эВ) нейтроны.
Замедлить нейтроны можно пропуская их через какое-либо вещество, содержащее водород (например, парафин, вода). Проходя через такие вещества, быстрые нейтроны испытывают рассеяние на ядрах и замедляются до тех пор, пока их энергия не станет равной, например, энергии теплового движения атомов вещества замедлителя, т. е. равной приблизительно kТ.
Медленные нейтроны эффективны для возбуждения ядерных реакций, так как они относительно долго находятся вблизи атомного ядра. Благодаря этому вероятность захвата нейтрона ядром становится довольно большой. Однако энергия медленных нейтронов мала, потому они не могут вызывать, например, неупругое рассеяние. Для медленных нейтронов характерны упругое рассеяние на ядрах (реакция типа (n, n)) и радиационный захват (реакция типа (n, γ)). Реакция (n, γ) приводит к образованию нового изотопа исходного вещества:
Часто в результате (л, у)-реакции образуются искусственные радиоактивные изотопы, дающие, как правило, β--распад. Например, в результате реакции
образуется радиоактивный изотоп , претерпевающий β--распад с образованием стабильного изотопа серы:
Под действием медленных нейтронов на некоторых легких ядрах наблюдаются также реакции захвата нейтронов с испусканием заряженных частиц — протонов и α-частиц (под действием тепловых нейтронов
(используется для обнаружения нейтронов) или
(используется для получения трития, в частности в термоядерных взрывах; см. § 268).
Реакции типа (n. р) и (n, α), т. е. реакции с образованием заряженных частиц, происходят в основном под действием быстрых нейтронов, так как в случае медленных нейтронов энергии атомного ядра недостаточно для преодоления потенциального барьера, препятствующего вылету протонов и α-частиц. Эти реакции, как и реакции радиационного захвата, часто ведут к образованию β--активных ядер.
Для быстрых нейтронов наблюдается неупругое их рассеяние, совершающееся по схеме
где вылетающий из ядра нейтрон обозначен как 10n´, поскольку это не тот нейтрон, который проник в ядро; 10n' имеет энергию, меньшую энергии 10n остающееся после вылета нейтрона ядро находится в возбужденном состоянии (отмечено звездочкой), поэтому его переход в нормальное состояние сопровождается испусканием γ-кванта.
Когда энергия нейтронов достигает значений 10 МэВ, становятся возможными реакции типа (n, 2n). Например, в результате реакции
образуется β--активный изотоп , претерпевающий распад по схеме
Реакция деления ядре
К началу 40-х годов работами многих ученых — Э. Ферми (Италия), О. Гана (1879—1968), Ф. Штрассмана (1902—1980) (ФРГ), О. Фриша (1904—1979) (Великобритания), Л. Мейтнер (1878—1968) (Австрия), Г.Н. Флерова (р. 1913), К.Н. Петржака (Россия) — было доказано, что при облучении урана нейтронами образуются элементы из середины Периодической системы — лантан и барий. Этот результат положил начало ядерным реакциям совершенно нового типа —реакциям деления ядра, заключающимся в том, что тяжелое ядро под действием нейтронов, а как впоследствии оказалось и других частиц делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе.
Замечательной особенностью деления ядер является то, что оно сопровождается испусканием двух-трех вторичных нейтронов, называемыхнейтронами деления. Так как для средних ядер число нейтронов примерно равно числу протонов (N/Z≈1), а для тяжелых ядер число нейтронов значительно превышает число протонов (N/Z≈1.6), то образовавшиеся осколки деления перегружены нейтронами, в результате чего они и выделяют нейтроны деления. Однако испускание нейтронов деления не устраняет 489 полностью перегрузку ядер-осколков нейтронами. Это приводит к тому, что осколки оказываются радиоактивными. Они могут претерпеть ряд β--превращений, сопровождаемых испусканием γ-квантов. Так как β--распад сопровождается превращением нейтрона в протон (см. 058.1)), то после цепочки
β--превращений соотношение между нейтронами и протонами в осколке достигнет величины, соответствующей стабильному изотопу. Например, при делении ядра урана 23592U
(265.1)
осколок деления 13954Xe в результате трех актов β--распада превращается в стабильный изотоп лантана 13957La:
Осколки деления могут быть разнообразными, поэтому реакция (265.1) не единственная приводящая к делению 23592U . Возможна, например
мгновенно (t≤10-14 с), а часть (около 0,7%) испускается осколками деления спустя некоторое время после деления (0,05 ≤t≤ 60 с). Первые из них называютсямгновенными,вторые —запаздывающими. В среднем на каждый акт деления приходится 2,5 испущенных нейтронов. Они имеют сравнительно широкий энергетический спектр в пределах от 0 до 7 МэВ, причем на один нейтрон в среднем приходится энергия около 2 МэВ.
Расчеты показывают, что деление ядер должно сопровождаться также выделением большого количества энергии. В самом деле, удельная энергия связи для ядер средней массы составляет примерно 8,7 МэВ, в то время как для тяжелых ядер она равна 7,6 МэВ (см. § 252). Следовательно, при делении тяжелого ядра на два осколка должна освобождаться энергия, равная примерно 1,1 МэВ на одни нуклон.
Эксперименты подтверждают, что при каждом акте деления действительно выделяется огромная энергия, которая распределяется между осколками (основная доля), нейтронами деления, а также между продуктами последующего распада осколков деления.
В основу теории деления атомных ядер (И. Бор, Я. И. Френкель) положена капельная модель ядра (см. § 254). Ядро рассматривается как капля электрически заряженной несжимаемой жидкости (с плотностью, равной ядерной, и подчиняющейся законам квантовой механики), частицы которой при попадании нейтрона в ядро приходят в колебательное движение, в результате чего ядро разрывается на две части, разлетающиеся с огромной энергией.
Вероятность деления ядер определяется энергией нейтронов. Например, если
высокоэнергетичные нейтроны (см. § 264) вызывают деление практически всех ядер, то нейтроны с энергией в несколько мегаэлектрон-вольт — только тяжелых ядер (А>210). Нейтроны, обладающиеэнергией активации— (минимальной энергией, необходимой для осуществления реакции деления ядра) порядка 1 МэВ, вызывают деление ядер урана 23892U, тория 23290Th, протактиния 23191Pa и плутония 23494Pu. Тепловыми нейтронами делятся ядра 23592U, 23494Pu, 23292U 23090Th (два последних изотопа в природе не встречаются, они получаются искусственным путем). Например, изотоп ^и получается в результате радиационного захвата (реакции (n, γ), см. § 264) нейтронов ядром 23290Th:
(265.2)
Цепная реакция деления
Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деления, что делает возможным осуществление цепной реакции деления — ядерной реакции, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Цепная реакция деления характеризуется коэффициентом размножения k нейтронов, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении. Необходимым условием для развития цепной реакции деления является требование А> 1.
Оказывается, что не все образующиеся вторичные нейтроны вызывают последующее деление ядер, что приводит к уменьшению коэффициента размножения. Во-первых, из-за конечных размеров активной зоны (пространство, где происходит цепная реакция) и большой проникающей способности нейтронов часть из них покинет активную зону раньше, чем будет захвачена каким-либо ядром. Во-вторых, часть нейтронов захватывается ядрами неделящихся примесей, всегда присутствующих в активной зоне. Кроме того, наряду с делением могут иметь место конкурирующие процессы радиационного захвата и неупругого рассеяния.
Коэффициент размножения зависит от природы делящегося вещества, а для данного изотопа — от его количества, а также размеров и формы активной зоны. Минимальные размеры активной зоны, при которых возможно осуществление цепной реакции, называютсякритическими размерами. Минимальная масса делящегося вещества, находящегося в системе критических размеров, необходимая для осуществленияцепной реакции, называетсякритической массой.
Скорость развития цепных реакций различна. Пусть Т — среднее время жизни одного поколения, а, N — число нейтронов в данном поколении. В следующем поколении их число равно kN, т. е. прирост числа нейтронов за одно поколение dN=kN-N=N(k-1). Прирост же числа нейтронов за единицу времени, т. е. скорость нарастания цепной реакции
где No — число нейтронов в начальный моент времени, а N — их число в момент времени t. N определяется знаком (k-1). При k> 1 идетразвивающаяся реакция, число делений непрерывно растет и реакция может стать взрывной. При k =1 вдетсамоподдерживающаяся реакция, при которой число нейтронов с течением времени не изменяется. При k<1 идетзатухающая реакция.
Цепные реакции делятся науправляемые и неуправляемые. Взрыв атомной бомбы, например, является неуправляемой реакцией. Чтобы атомная бомба при хранении не взорвалась, в вей 23592U, (или 23494Pu) делится на две удаленные друг от друга части с массами ниже критических. Затем с помощью обычного взрыва эти массы сближаются, общая масса делящегося вещества становится больше критической в возникает взрывная цепная реакция, сопровождающаяся мгновенным выделением огромного количества энергии и большими разрушениями. Взрывная реакция начинается за счет имеющихся нейтронов спонтанного деления или нейтронов космического излучения. Управляемые цепные реакции осуществляются в ядерных реакторах (см. § 267).
В природе имеется три изотопа, которые могут служить ядерным топливом (23592U: в естественном уране его содержится примерно 0,7%) или сырьем для его получения (23290Th и 23892U: в естественном уране его содержится примерно 99,3%). 23290Th служит исходным продуктом для получения искусственного ядерного топлива 23392U (см. реакцию
(265,2)), а 23892U, поглощая нейтроны, посредством двух последовательных β- -распадов — для превращения в ядро 23994Рu:
β- β-
23892U+ 10n→ 23992U →23993Np→23994Pu (266.2)
Реакции (266.2) и (265.2), таким образом, открывают реальную возможность воспроизводства ядерного горючего в процессе цепной реакции деления.
Рис. 346
будет вырабатываться ва АЭС, то это, с одной стороны, снизит стоимость электроэнергии, которая сейчас сравнима с вырабатываемой на тепловых электростанциях, а с другой — решит энергетическую проблему на несколько столетий и позволит использовать сжигаемые сейчас нефть ж газ в качестве ценного сырья для химической промышленности.
В СНГ помимо создания мощных АЭС (например, Нововоронежской общей мощностью примерно 1500 МВт, первой очереди Ленинградской с двумя реакторами по 1000 МВт) большое внимание уделяется созданию небольших АЭС (750-1500 кВт), удобных для эксплуатации в специфических условиях, а также решению задач малой ядерной энергетики. Так, построены первые в мире передвижные АЭС, создан первый в мире реактор («Ромашка»), в котором с помощью полупроводников происходит непосредственное преобразование тепловой энергии в электрическую (в активной зове содержится 49 кг 23592U, тепловая мощность реактора 40 кВт, электрическая—0,8 кВт).
Огромные возможности для развтия атомной энергетики открываются с созданием реакторов-размножителей на быстрых нейтронах (бридеров), в которых выработка энергии сопровождается производством вторичного горючего—плутония, что позволит кардинально решить проблему обеспечения яоерным горючим. Как показывают оценки, 1 т гранита содержит примерно 3 г23892U 12 г 23290Th (именно они используются в качестве сырья в реакторах-размножителях), т. е. при потреблении энергии 5·108 МВт (на два порядка выше, чем сейчас) запасов урана и тория в граните хватит на 109 лет.
Техника реакторов на быстрых нейтронах находится в стадии поисков наилучших инженерных решений. Первая опытно-промышленная станция такого типа мощностью 350 МВт построена в г. Шевченко на берегу Каспийского моря. Она используется для производства электроэнергии и опреснения морской воды, обеспечивая водой город и прилегающий район нефтедобычи с населением порядка 150 000 человек. Шевченковская АЭС положила начало новой «атомной отрасли» — опреснению соленых вод, которая в связи с дефицитом пресноводных ресурсов во многих районах может иметь большое значение.
Глава 32 Элементы физики атомного ядра