Уже при попадании яда в полость желудка начинается его идентификация, в основном, энергококоном поджелудочной железы. Он же затем запускает опережающий механизм обезвреживания.

При разрушении токсических продуктов печенью доминируют лимфатические узлы средостения. Они наделяют соответствующей информацией лимфоциты, поступающие затем к воротам печени. В данном же случае ведущую роль играют артерии брыжейки кишечника. Этот орган обильно снабжается кровью, и здесь, как правило, находится дос­таточное количество энергоструктур, способных обезвредить яд. Энерговсплеск в арте­риях брыжейки кишечника распространяется по сосудам и энергоосям кишечника. Он блокирует энергосоставляющую токсина и способствует его разрушению.

Описанный механизм достаточно эффективен. Он способен предотвратить ле­тальный исход в результате действия яда на печень, почки и форменные элементы крови. Данный механизм лежит в основе адаптации людей к ядам, например, некото­рых змей.

В организме существует множество систем, защищающих воспроизводство фор­менных элементов крови. Область кроветворения беззащитна лишь против ионизиру­ющих излучений. Каждая кроветворная зона покрыта собственным энергетическим по­лем, которое является защитой и одновременно программой развития форменных элементов. Мозжечок не контролирует работу такой программы.

Достаточно изученный процесс образования форменных элементов крови нужда­ется в дополнении. Клетки-родоначальницы (стволовые клетки) красной и белой кро­ви очень близки по своему строению и различаются только энергетическим кодом.

Имеются также особенности энергококонов каждого кроветворного узла, обуслов­ленные расположенными поблизости энергетическими комплексами органов. Крылья подвздошной кости, например, расположены рядом со 2-й чакрой и основанием 1-й чакры. Грудина - рядом с сердцем и, соответственно, 4-й чакрой. Чем ближе к энергона­сыщенным структурам находится кроветворный орган, тем более специализированны его форменные элементы. Эритроцит, например, возникший в грудине, способен пере­носить больше кислорода, чем аналогичная клетка, образованная в пяточной кости, но последняя более долговечна. Так, первый эритроцит живет лишь 80 суток, а второй -120 суток.

В некоторых ситуациях в организме могут формироваться короткие энергоинформа­ционные структуры, которые, проникая с током крови в органы кроветворения, способны разрушать отдельные фрагменты программ синтеза форменных элементов. Сочетание стресса, алкоголя и паров ртути, если их воздействие длится 1,5-2 часа, в 80% случаев способно создать в арсенальных структурах короткую программу. Это энергообразование разрушает фрагмент энергополя костных кроветворных органов, контролирующий коли­чество лейкоцитов, в результате чего развивается лимфолейкоз. Возможно появление и других аналогичных энергоструктур, вызывающих различные патологии.

Недостаток витаминов группы В при повышенной солнечной активности, кровопотеря и стрессы способны приводить к временному или постоянному дефекту отшнуровки тромбоцитов. Непродолжительные стрессовые реакции, а также истерия и неврасте­ния способствуют временному нарушению. Дефект становится постоянным, если после стресса развивается выраженная депрессия. В арсенале создаётся прочная патологичес­кая программа, воспринимаемая организмом как экстренная реакция по спасению орга­низма от потери крови. Стимулируется выброс тромбоцитов в ущерб их качеству. Об­разованная в арсенале программа через биоэкран передается на полевую оболочку орга­низма и через кровь воздействует на 4-ю чакру.

ПЛАЗМА КРОВИ

1. Биохимическое взаимодействие плазмы крови с арсенальными структурами.

Плазма крови, кроме своих основных функций, способна служить для арсенала источником информации. Из кишечника в кровь могут проникать достаточно длинные фрагменты белков. В основном они используются в качестве строительного материала, но обладают также и энергоинформационной составляющей. Белковые фрагменты, на­пример, животного происхождения несут информацию не только о животном, чьё мясо съел человек, но и о тех растениях, которыми, в свою очередь, питалось животное. В арсенале имеются программы, способные воспринимать подобную информацию.

При продвижении таких фрагментов вглубь больших полушарий мозга происхо­дит оценка их информационной составляющей подчерепным энергококоном. Если в этой информации нуждаются активные в данный момент программы арсенала, подче­репной энергококон может усилить их энергетическую составляющую. Это происхо­дит за счёт дополнительных энергетических поступлений с биоэкрана или самостоя­тельного стягивания энергии к фрагменту на коконе при совпадении активных точек фрагмента и энергококона.

Проходя по арсеналу, энергоинформационная составляющая такого фрагмента вза­имодействует с его структурами, пополняя их информацией. Если этого не происходит, что бывает чаще, белковый осколок следует дальше, расходуясь на чисто энергетичес­кие нужды организма.

Описанный механизм аналогичен восприятию арсеналом информации от биопо­лей растений и животных через полевую оболочку.

Составляющие плазмы и форменные элементы крови снабжают энергией активи­зированные арсенальные программы, связанные с интеллектуальной деятельностью. Их недостаточное поступление к клеткам мозга может приводить к «голоданию» программ. В этом случае в действие вступают видовые программы мозжечка. Они блокируют активизированные программы, подчиняя арсенал и биоэкран текущим возможностям организма.

2. Три программных белковых комплекса плазмы крови.

В плазме встречаются три разновидности белковых программных комплексов. Они различны по строению и функциям, но их объединяет наличие в составе нук­леиновых кислот. Нуклеиновые цепи несут наследственную информацию анало­гично ДНК хромосом. В комплексах нуклеиновые молекулы плотно переплетены белковыми цепочками, выполняющими следующие функции.

Белковые оболочки предохраняют нуклеиновый информационный носи­тель от активных элементов крови.

Наши рекомендации