Последовательное соединение конденсаторов
К батарее из двух последовательно соединённых конденсаторов подключим электростатический вольтметр с полой сферой. Сообщим соединённой с вольтметром обкладке первого конденсатора заряд +q. По индукции вторая обкладка этого конденсатора приобретёт заряд –q, а соединённая с ней проводником обкладка второго конденсатора – заряд +q. В результате оба конденсатора будут нести одинаковый заряд q. При этом напряжения на конденсаторах различны. Понятно, что сумма напряжений на каждом из конденсаторов равна общему напряжению батареи:
7)Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.
Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую (рис. 1.7.1). При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным. Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов при переносе каждой порции Δq внешние силы должны совершить работу
Энергия Wе конденсатора емкости C, заряженного зарядом Q, может быть найдена путем интегрирования этого выражения в пределах от 0 до Q:
Рисунок 1.7.1. Процесс зарядки конденсатора |
Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением Q = CU.
|
Электрическую энергию Wе следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе. Формулы для Wе аналогичны формулам для потенциальной энергии Eр деформированной пружины (см. ч. I, § 2.4)
где k – жесткость пружины, x – деформация, F = kx – внешняя сила.
По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля. Это легко проиллюстрировать на примере заряженного плоского конденсатора.
Напряженность однородного поля в плоском конденсаторе равна E = U/d, а его емкость Поэтому
где V = Sd – объем пространства между обкладками, занятый электрическим полем. Из этого соотношения следует, что физическая величина
|
является электрической (потенциальной) энергией единицы объема пространства, в котором создано электрическое поле. Ее называют объемной плотностью электрической энергии.
Энергия поля, созданного любым распределением электрических зарядов в пространстве, может быть найдена путем интегрирования объемной плотности wе по всему объему, в котором создано электрическое поле.