Последовательное соединение конденсаторов

К батарее из двух последовательно соединённых конденсаторов подключим электростатический вольтметр с полой сферой. Сообщим соединённой с вольтметром обкладке первого конденсатора заряд +q. По индукции вторая обкладка этого конденсатора приобретёт заряд –q, а соединённая с ней проводником обкладка второго конденсатора – заряд +q. В результате оба конденсатора будут нести одинаковый заряд q. При этом напряжения на конденсаторах различны. Понятно, что сумма напряжений на каждом из конденсаторов равна общему напряжению батареи:

Последовательное соединение конденсаторов - student2.ru

7)Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую (рис. 1.7.1). При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным. Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов Последовательное соединение конденсаторов - student2.ru при переносе каждой порции Δq внешние силы должны совершить работу Последовательное соединение конденсаторов - student2.ru

Энергия Wе конденсатора емкости C, заряженного зарядом Q, может быть найдена путем интегрирования этого выражения в пределах от 0 до Q:

Последовательное соединение конденсаторов - student2.ru
Последовательное соединение конденсаторов - student2.ru
Рисунок 1.7.1. Процесс зарядки конденсатора

Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением Q = CU.

Последовательное соединение конденсаторов - student2.ru

Электрическую энергию Wе следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе. Формулы для Wе аналогичны формулам для потенциальной энергии Eр деформированной пружины (см. ч. I, § 2.4)

Последовательное соединение конденсаторов - student2.ru

где k – жесткость пружины, x – деформация, F = kx – внешняя сила.

По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля. Это легко проиллюстрировать на примере заряженного плоского конденсатора.

Напряженность однородного поля в плоском конденсаторе равна E = U/d, а его емкость Последовательное соединение конденсаторов - student2.ru Поэтому

Последовательное соединение конденсаторов - student2.ru

где V = Sd – объем пространства между обкладками, занятый электрическим полем. Из этого соотношения следует, что физическая величина

Последовательное соединение конденсаторов - student2.ru

является электрической (потенциальной) энергией единицы объема пространства, в котором создано электрическое поле. Ее называют объемной плотностью электрической энергии.

Энергия поля, созданного любым распределением электрических зарядов в пространстве, может быть найдена путем интегрирования объемной плотности wе по всему объему, в котором создано электрическое поле.

Наши рекомендации