Диэлектрики в электрическом поле
Параметры электрического поля и их расчёт.
Электрическое поле характеризуется воздействием на электро заряженную частицу с силой пропорциональной заряда частицы и независящей от ее скорости.
Напряжённость— векторная величина определяющая силу
действующую на заряженную частицу или тело со стороны электрического поля и численно равная отношению силы к заряду частицы.
Е = F/Q [Н/Кл] или [B/M]
Напряжённость — это основная характеристика электрического поля которая измеряет интенсивность поля.
Электрическое напряжение (U) — это работа (А) совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.
U = A/q [Дж/Кл] или [В]
Потенциал (φ)— это энергетическая характеристика поля численно равная отношению потенциальной энергии заряженной частицы помещенной в данной точке поля величине её заряда.
φ = W/Q[В]
Геометрическое место поля с с одинаковым потенциалом называется эквипотенциальной поверхностью.
Потенциал и напряжение в электрическом поле.
Потенциал в каждой точке электрического поля характеризуется энергией W , которая затрачивается (или может быть затрачена) полем на перемещение единицы положительного заряда q из данной точки за пределы поля, если поле создано положительным зарядом, или из-за пределов поля в данную точку, если поле создано отрицательным зарядом.φ = W/Q[В]
Потенциал – скалярная величина. Если электрическое поле создано несколькими зарядами, то потенциал в каждой точке поля определяется алгебраической суммой потенциалов, созданных в этой точке каждым зарядом.
Между точками с равными потенциалами заряд перемещаться не будет. Следовательно, для перемещения заряда между двумя точками электрического поля должна быть разность потенциалов в этих точках.
Разность потенциалов двух точек электрического поля характеризует напряжение между этими точками.
UАВ = φА - φВ; UВС = φB - φC; UАС = φА - φC
Электрическое напряжение обозначают буквой U (и). Оно численно равно отношению работы W, которую нужно затратить на перемещение положительного заряда q из одной точки поля в другую, к этому заряду, т. е.
U = W / q(2)
Следовательно, напряжение U, действующее между различными точками электрического поля, характеризует запасенную в этом поле энергию, которая может быть отдана путем перемещения между этими точками электрических зарядов.
Электрическое напряжение — важнейшая электрическая величина, позволяющая вычислять работу и мощность, развиваемую при перемещении зарядов в электрическом поле. Единицей электрического напряжения служит вольт (В).
Проводники и диэлектрики в электрическом поле.
Проводниками называют материалы, имеющие так называемые свободные заряды, которые могут перемещаться в объеме проводника под действием сколь угодно малого внешнего электрического поля.
При помещении проводников во внешнее электрическое поле, свободные заряды начинают перемещаться в этом поле, если в объем проводника был дополнительно внесен некоторый заряд, то под действием этого внешнего поля, этот дополнительный заряд распределиться по поверхности проводника.
Таким образом, при электризации проводника сообщенный ему дополнительный заряд оказывается, распределен в области поверхности проводника. Это распределение заряда будет происходить до тех пор, пока при распределении заряда потенциал поля в любой точке проводника не станет одинаковым.
Отметим свойства заряженного проводника во внешнем электрическом поле.
1. Электрический потенциал в любой точке объема равен потенциалу в любой точке поверхности проводника.
2. Линии электрического поля перпендикулярны поверхности проводника.
3. При помещении заряда проводника во внешнее электрическое поле внутри объема проводника будет наблюдаться движение зарядов до тех пор, пока суммарное поле внутри объема, обусловленное внешним полем, и поле дополнительного заряда не станет равным нулю.
Диэлектрики в электрическом поле.
Диэлектрики это вещества, у которых электроны внешних оболочек атома не могут свободно перемещаться по объему диэлектрика под действием сколь угодно малого внешнего поля.
В зависимости от химического строения диэлектрики можно разделить на три группы:
1. Неполярные диэлектрики.
К ним относятся такие диэлектрики ( парафин, бензол), у которых центры сосредоточения положительных и отрицательных зарядов совпадают.
У неполярных диэлектриков возникающий дипольный момент при наложении внешнего электрического поля является упругим и пропорционален напряженности электрического поля.
2.Полярные диэлектрики
К ним относятся такие диэлектрики, у которых центры сосредоточения положительных и отрицательных зарядов не совпадают.
При помещении полярного диэлектрика во внешнее электрическое поле, дипольный момент каждой молекулы будет стремиться развернуться по полю, в тоже время этому процессу препятствует тепловое хаотическое движение, таким образом дипольный момент для полярного диэлектрика является функцией зависимости Е0 от температуры.
3. Ионные диэлектрики.
К ионным диэлектрикам относятся вещества, имеющие ионную структуру.
К ним относятся соли или щелочи: NaCl, KCl, и т.д.
При помещении ионного диэлектрика во внешнее электрическое поле в отличии от полярных диэлектриков будет наблюдаться смещение положительных зарядов по полю, а отрицательных зарядов против поля. Главное отличие в том, что в разумных интервалах температур энергия связи между ионами оказывается больше, чем энергия теплового движения.