Нелинейные электрические цепи постоянного тока

Основные определения

Все электрические цепи являются нелинейными. Они могут считаться линейными в ограниченных диапазонах значений токов и напряжений. Например, при чрезмерно больших токах происходит значительный нагрев материала проводников, сопровождающийся резкими изменениями их сопротивлений.
В линейной электрической цепи сопротивления ее элементов не зависят от величины или направления тока или напряжения. Вольтамперные характеристики линейных элементов (зависимость напряжения на элементе от тока) являются прямыми линиями (рис. 5.1).

Нелинейные электрические цепи постоянного тока - student2.ru

Рис. 5.1

Электрическое сопротивление линейного элемента пропорционально тангенсу угла наклона его вольтамперной характеристики к оси тока.

Нелинейные электрические цепи постоянного тока - student2.ru ,

где mU и mI - масштабы напряжения и тока.

В нелинейной электрической цепи сопротивления ее элементов зависят от величины или направления тока или напряжения.
Нелинейные элементы имеют криволинейные вольтамперные характеристики, симметричные или несимметричные относительно осей координат.
Сопротивления нелинейных элементов с симметричной характеристикой не зависят от направления тока.
Сопротивления нелинейных элементов с несимметричной характеристикой зависят от направления тока. Например, электролампы, термисторы имеют симметричные вольтамперные характеристики (рис. 5.2), а полупроводниковые диоды - несимметричные характеристики (рис. 5.3).

Нелинейные электрические цепи постоянного тока - student2.ru

Рис. 5.2 Рис. 5.3

Статическим или интегральным сопротивлением нелинейного элемента называется отношение напряжения на элементе к величине тока. Это сопротивление пропорционально тангенсу угла наклона α между осью тока и прямой, проведенной из начала координат в точку а характеристики.

Нелинейные электрические цепи постоянного тока - student2.ru .

Нелинейные электрические цепи постоянного тока - student2.ru

Рис. 5.4 Рис. 5.5

Дифференциальное, или динамическое, сопротивление нелинейного элемента - это величина, равная отношению бесконечно малого приращения напряжения на нелинейном сопротивлении к соответствующему приращению тока.

Это сопротивление пропорционально тангенсу угла наклона β между осью тока и касательной к точке a характеристики.

Нелинейные электрические цепи постоянного тока - student2.ru .

При переходе от одной точки вольтамперной характеристики к соседней статическое и динамическое сопротивления нелинейного элемента меняются.
Статическое и динамическое сопротивления линейного элемента одинаковы и не зависят от тока или напряжения.

5.2. Графический метод расчета нелинейных цепей
постоянного тока

Известные аналитические методы непригодны для расчета нелинейных электрических цепей, так как сопротивления нелинейных элементов зависят от направления и значения тока или напряжения. Применяются графоаналитические методы, основанные на применении законов Кирхгофа и использовании заданных вольтамперных характеристик (ВАХ) этих элементов. Рассмотрим электрическую цепь, состоящую из двух последовательно соединенных нелинейных сопротивлений н.с.1 и н.с.2 (рис. 5.6). ВАХ 1 и ВАХ 2 приведены на рис. 5.7.

Нелинейные электрические цепи постоянного тока - student2.ru

Рис. 5.6 Рис. 5.7

К цепи подведено напряжение U, и оно равно сумме падений напряжений на н.с.1 и н.с.2:

Нелинейные электрические цепи постоянного тока - student2.ru (5.1)

По всей цепи протекает один и тот же ток I, так как н.с.1 и н.с.2 соединены между собой последовательно. Для определения тока в электрической цепи нужно построить результирующую ВАХ цепи. Для построения этой характеристики следует суммировать абсциссы кривых 1 и 2 (аг = аб + ав), соответствующие одним и те же значениям тока. Далее, задаваясь произвольным значением тока (например, больше I' и меньше I' ) можно построить ВАХ всей цепи (рис. 5.7, кривая 3). Затем, пользуясь этой ВАХ, можно найти искомый ток всей цепи и искомые напряжения на н.с.1 и н.с.2. Для этого отложим на оси абсцисс отрезок Нелинейные электрические цепи постоянного тока - student2.ru (mu - масштаб напряжения источника питания) и проведем из точки p прямую, перпендикулярную оси абсцисс до пересечения с кривой 3. Получим отрезок np = ko. Ток Нелинейные электрические цепи постоянного тока - student2.ru (mI - масштаб тока всей цепи). Для найденного тока по ВАХ 1 и ВАХ 2 находим напряжения U1 и U2. Нелинейные электрические цепи постоянного тока - student2.ru ; Нелинейные электрические цепи постоянного тока - student2.ru .

При параллельном соединении двух нелинейных элементов (рис. 5.8) ток в неразветвленной части электрической цепи равен сумме токов в параллельных определенных ветвях. Поэтому при построении результирующей ВАХ всей цепи следует суммировать ординаты графиков 1 и 2 (рис. 5.9), соответствующие одним и те же значениям напряжения, так как к этим нелинейным элементам приложено одно и то же напряжение, равное напряжению внешней сети, т.е. источника питания. Например, для произвольного значения напряжения Нелинейные электрические цепи постоянного тока - student2.ru находим ординату аг точки для результирующей кривой 3.
(аг = ав + аб)

Нелинейные электрические цепи постоянного тока - student2.ru

Рис. 5.8 Рис. 5.9

Далее задаваясь произвольным значением напряжения больше и меньше U', можно построить ВАХ всей цепи (кривая 3). Затем, пользуясь ВАХ, можно при любом значении приложенного напряжения U (отрезок ор) найти величину общего тока I (pn = oк). Это напряжение также определяет значения токов I1 и I2 в отдельных ветвях с учетом масштаба тока mI.

В случае смешанного (рис. 5.10) соединения расчет цепи производят в следующем порядке: сначала заменяют два параллельно соединенных нелинейных элемента одним эквивалентным; схема со смешанным соединением приводится к рассмотренной ранее схеме последовательного соединения двух нелинейных элементов.

Нелинейные электрические цепи постоянного тока - student2.ru

Рис. 5.10

Магнитные цепи

Основные определения

Как известно из курса физики, вокруг проводника с током появляется магнитное поле. Интенсивность магнитного поля характеризуется векторной величиной: напряженностью магнитного поля Нелинейные электрические цепи постоянного тока - student2.ru , измеряемой в амперах на метр (A/м). Интенсивность магнитного поля характеризуется также вектором магнитной индукции Нелинейные электрические цепи постоянного тока - student2.ru , измеряемой в теслах (Тл). Напряженность магнитного поля не зависит, а магнитная индукция зависит от свойств окружающей среды.

Нелинейные электрические цепи постоянного тока - student2.ru

где μ0 - абсолютная магнитная проницаемость, Гн/м;

μ - относительное значение магнитной проницаемости, безразмерная величина;

μ0 = 4π·10-7 Гн/м.
В зависимости от величины относительной магнитной проницаемости, все вещества делятся на три группы.

К первой группе относятся диамагнетики: вещества, у которых μ< 1.
Ко второй группе относятся парамагнетики, вещества с μ >1.
К третьей группе относятся ферромагнетики, вещества с μ >> 1.

К ферромагнетикам принадлежат железо, никель, кобальт и многие сплавы из неферромагнитных веществ.
Магнитной цепью называется совокупность устройств, содержащих ферромагнитные вещества. Процессы в магнитных цепях описываются с помощью понятий магнитодвижущей силы, магнитного потока.
Магнитным потоком называется поток вектора магнитной индукции через поверхность S

Нелинейные электрические цепи постоянного тока - student2.ru .


Магнитный поток измеряется в веберах (Вб).
Источником магнитодвижущей силы является либо постоянный магнит, либо электромагнит (катушка, обтекаемая током).
Магнитодвижущая сила электромагнита

Нелинейные электрические цепи постоянного тока - student2.ru


где I - ток, протекающий в катушке;
W - число витков катушки.
В магнитных цепях используется свойство ферромагнитного материала тысячекратно усиливать магнитное поле катушки с током за счет собственной намагниченности.

Наши рекомендации