Глава 4. газовая и вакуумная изоляция
Применение газовой изоляции дает ряд преимуществ по сравнению с твердыми и жидкими диэлектриками. В частности, газовая изоляция отличается очень малыми диэлектрическими потерями и практически не изменяет своих свойств в процессе эксплуатации. Применение ее приводит к резкому снижению массы конструкции. В ряде случаев конструкция устройства упрощается и становится пожаробезопасной.
При увеличении давления электрическая прочность элегаза (SF6) и воздуха становится выше электрической прочности твердых и жидких диэлектриков, например минерального масла.
Газы, используемые для изоляции установок высокого напряжения, должны быть химически стойкими в электрическом разряде и не должны выделять химически активных веществ; быть инертными и не вступать в реакции с материалами, в сочетании с которыми они применяются; обладать низкой температурой сжижения, допускающей их применение при повышенных давлениях, и высокой теплопроводностью. Помимо этого они должны быть негорючими и нетоксичными, и иметь невысокую стоимость.
В настоящее время в качестве изоляции применяются воздух, азот и шестифтористая сера (элегаз). Из них наибольшей электрической прочностью, превышающей прочность азота и воздуха примерно в 2,5 раза, обладает элегаз. Причина этого заключается в том, что эле газ является электроотрицательным газом, в состав его молекулы SF6 входит фтор — галоген, легко присоединяющий к себе электрон и образующий устойчивые отрицательны ионы. Свое название элегаз получил от сокращения “электрический газ”. Электрическая прочность при атмосферном давлении и зазоре 1 см составляет E = 89 кВ/см. Элегаз химически инертен, нетоксичен, негорюч, термостоек (до 800 °С), взрывобезопасен, слабо разлагается в разрядах, имеет низкую температуру сжижения. В отсутствие примесей элегаз совершенно безвреден для человека. Однако продукты разложения токсичны и химически активны.
При увеличении давления электрическая прочность элегаза возрастает почти пропорционально давлению и может быть выше электрической прочности жидких и некоторых твердых диэлектриков. Наибольшее рабочее давление и, следовательно, наибольший уровень электрической прочности элегаза в изоляционной конструкции ограничиваются возможностью сжижения элегаза при низких температурах. Так, температура сжижения элегаза при давлении 0,3 МПа составляет -45 °С, а при 0,5 МПа повышается до -30 °С. Такие температуры у отключенного оборудования наружной установки вполне возможны зимой во многих районах страны. В связи с этим большой интерес представляют смеси элегаза с азотом, у которых электрическая прочность лишь на 10 — 15 % ниже прочности чистого элегаза, а допустимое давление резко возрастает. Так, например, у смеси из 30 % элегаза и 70 % азота сжижение при температуре -45 °С наступает при давлении 8 МПа, Таким образом, допустимое рабочее давление для смеси оказывается примерно в 30 раз выше, чем для чистого элегаза.
Для крепления токоведущих частей в комбинации с элегазом используются опорные изоляционные конструкции из литой эпоксидной изоляции. Основным материалом в ней является эпоксидная или эпоксидно-диановая смола. Качество таких опорных изоляторов и особенно их длительная электрическая прочность в сильной степени зависят от технологии подготовки материалов и заливки. Обязательными считаются сушка исходных материалов, тщательное перемешивание компаунда, вакуумирование объема формы, заливка и выдержка до отвердения при избыточном давлении. Эти мероприятия позволяют исключить в литой изоляции газовые включения и тем самым обеспечить высокий уровень ее длительной электрической прочности.
Элегазовая изоляция может быть использована только в герметичных конструкциях. Практика показала, что надежная герметизация конструкций с элегазом является сложной задачей, требующей пристального внимания. В современных элегазовых аппаратах утечка элегаза не превышает 1 % общей массы в год.
Высокая надежность элегазовой изоляции, как показывает опыт эксплуатации, обеспечивается при условии очень тщательной очистки от загрязнений всех элементов конструкции, соприкасающихся с элегазом. Небольшие количества пыли, мелкой металлической стружки, волокон пряжи или бумаги могут снизить кратковременную электрическую прочность конструкции или вызвать появление в ней частичных разрядов. Последние опасны тем, что разлагают элегаз с образованием химически очень активных, а иногда и токсичных продуктов.
В настоящее время основной областью применения элегазовой изоляции являются комплектные распределительные устройства (КРУЭ) на напряжение 110 — 220 кВ, наибольшее рабочее давление элегаза в которых 0,3 МПа. Сейчас разрабатываются КРУЭ на напряжение 1150 кВ, ведутся работы по созданию силовых кабелей с элегазовой изоляцией.
Элегаз является не только хорошей изолирующей, но и хорошей дугогасящей средой. Ток отключения в элегазе примерно в 10 раз больше, чем в воздухе. Если же учесть, что в элегазе скорость восстановления электрической прочности после погасания дуги почти на порядок выше, чем в воздухе, то из этого следует, что мощность отключения в элегазе может быть почти в 100 раз больше, чем в воздухе. По этой причине элегазовые выключатели успешно конкурируют с воздушными выключателями.
Воздух под избыточным давлением в несколько атмосфер используется в основном в образцовых конденсаторах на напряжение до 35 кВ. Ограниченное применение воздуха связано с тем, что при частичных разрядах в воздухе образуется озон, вызывающий коррозию металлов и разрушение твердых диэлектриков.
Азот и элегаз применяются для изоляции конденсаторов, трансформаторов, кабелей и герметизированных распределительных устройств.
Характерной особенностью электроотрицательных газов (элегаза, воздуха) под давлением является наличие максимума в зависимости пробивного напряжения промежутков с резконеоднородным полем от давления. Такое явление наблюдается при переменном напряжении, а также при постоянном напряжении и положительной полярности электрода с высокой кривизной поверхности. При импульсных напряжениях максимум выражен слабо. Объясняется это возникновением вблизи электрода с большой кривизной в результате ионизации положительного объемного заряда. Диффузия этого заряда затруднена из-за повышения давления, и он как бы увеличивает радиус кривизны электрода, выравнивая электрическое поле, вследствие чего пробивное напряжение повышается. При дальнейшем росте давления после значения, соответствующего максимуму Uпр, вследствие увеличивающегося поглощения фотонов и усиления фотоионизации изменяется механизм разряда: из лавинного он становится стримерным, и пробивное напряжение достаточно резко снижается.
Напряжение начала короны, кВ, в элегазовых промежутках, образующих однородное поле, рассчитывается по формуле
Uk = 89,3 dL + 0,71, (2.14)
где L – длина промежутка, см; d - относительная плотность элегаза.
Для цилиндрических электродов, образующих коаксиальную систему, напряженность начала короны, кВ/см, определяется по выражению
, (2.15)
где r – радиус внутреннего электрода,см.
Напряжение начала короны рассчитывается по формуле
, (2.16)
где kн –коэффициент неоднородности электрического поля.
Приведенные формулы справедливы для гладких электродов. В реальных конструкциях на поверхности электродов всегда имеются микроскопические выступы (шероховатости) и осевшие частицы. Напряженность электрического поля у выступов возрастает, что приводит к снижению Uk. Оценка напряжения начала короны производится в таких случаях по экспериментальным данным.
При увеличении площади поверхности электрода вероятность зажигания разряда возрастает. Если среднее значение напряженности зажигания разряда на электроде площадью S равно EсрS, то для такого же электрода с большей площадью S1 среднее значение напряженности может быть определено как
. (2.17)
Уменьшение Еср с ростом площади электрода связано в первую очередь с ростом вероятности появления высоких выступов или оседания больших, частиц на его поверхности. Однако соответствии с законами теории вероятности Еср должно уменьшаться с ростом площади и в случае гладких электродов.
Жесткость изоляционной конструкции с газом придают вставки, распорки и другие элементы, выполненные из твердых диэлектриков. Электрическая прочность такой комбинированной изоляции определяется напряжением перекрытия по поверхности твердого диэлектрика. Основными причинами снижения разрядных напряжений по сравнению с чисто элегазовым промежутком являются плохой контакт изолятора с электродами и большая нормальная составляющая напряженности электрического поля на поверхности твердого диэлектрика. Если исключить плохие контакты и выровнять поле, придав изолятору соответствующую форму или использовав внутренний экран, то удается в некоторых случаях получить разрядные напряжения по поверхности изолятора, близкие по значениям к пробивному напряжению чисто элегазового промежутка.
Промежутки, для которых произведение давления газа на межэлектродное расстояние лежит в пределах 0,01 — 0,20 кПа×см, считаются вакуумными промежутками. Возникновение разряда в них определяется практически только процессами на электродах. В ряде случаев электрическая прочность вакуумной изоляции может быть выше, чем газовой изоляции (порядка 30 кВ/см).
Различают три вида нарушения электрической прочности вакуумной изоляции: во-первых, появление более или менее стабильных токов с плотностью 10-4 — 10-3 А/см2, резко зависящих от приложенного к электродам напряжения. Эти токи называются предпробивными; во-вторых, возникновение периодически повторяющихся самогасящихся маломощных импульсов тока силой 10-4 — 10-3 А и длительностью 10-4 — 10-3 с с частотой повторения от долей до десятков и сотен герц; в-третьих, возникновение пробоя всего изоляционного промежутка. Пробой характеризуется резким спадом напряжения между электродами и образованием дуги.
Под нарушением электрической прочности вакуумной изоляции понимают те явления, которые ограничивают подъем напряжения на электродах в данной конкретной установке. В одном случае это пробой при быстром подъеме напряжения, в других — возникновение изредка импульсов тока при длительном приложении напряжения или появление предпробивных токов. Таким образом, в зависимости от требований, предъявляемых к вакуумной изоляции, в понятие электрической прочности может вкладываться разный смысл.
Отличительной чертой вакуумной изоляции являются очень большие разбросы пробивных напряжений и напряжений появления предпробивных и импульсных токов (измеренные значения могут отличаться друг от друга в 1,5—3,0 раза), что объясняется особенностями микроструктуры поверхности электродов и их чистотой (адсорбционные и окисные пленки). Характеристики поверхности зависят от материала и чистоты обработки электродов и могут изменяться при воздействии разрядов.
Уменьшить разброс пробивных напряжений удается с помощью тренировки электродов, представляющей собой серию пробоев вакуумного промежутка до установления стабильного напряжения. При пробоях вакуумного промежутка происходят нагрев электродов и испарение их поверхности. В результате этого поверхность электродов становится более гладкой и очищается от посторонних веществ, что и приводит к повышению и стабилизации пробивного напряжения.
В установках с вакуумной изоляцией, так же как и с газовой, электрическая прочность промежутка очень часто определяется разрядным напряжением по поверхности твердых изоляторов, которые применяются для крепления различных узлов установки. Для повышения и стабилизации разрядного напряжения по поверхности твердого диэлектрика также проводят тренировку, которая представляет собой выдержку промежутка под напряжением.
Вакуумная изоляция используется в установках и приборах, где вакуум является рабочей средой. Это — ускорители, космические двигатели, электростатические сепараторы, электровакуумные приборы. Вакуумная изоляция применяется также в конденсаторах на 20 — 50 кВ, в выключателях, вакуумных разрядниках и реле. Использование вакуумной изоляции в выключателях представляет интерес благодаря быстрому восстановлению электрической прочности промежутка после пробоя (10-3 — 10-4 с); применение вакуумной изоляции в искровых реле позволяет получать хорошие временные характеристики реле: нестабильность времени срабатывания меньше 10 нс.
Недостатком вакуумной изоляции являются конструктивные сложности получения высокого вакуума и сложная технологическая обработка токоведущих частей.