Герконовое и поляризованное реле, устройство и принцип работы

Наименее надёжным узлом электромагнитных реле является контактная система. Электрическая дуга или искра, образующиеся при размыкании и замыкании контактов,

приводят к их быстрому разрушению. Этому также способ­ствуют окислительные процессы и покрытие контактных поверхностей слоем пыли, влаги, грязи. Существенным не­достатком электромагнитных реле является и наличие трущихся механических деталей, износ которых также сказывается на их работоспособности. Попытки разместить контакты и электромагнитный механизм в герметизирован­ном объеме с инертным газом не приводят к положительным результатам из-за больших технологических конструктивных трудностей, а также из-за того, что контакты при этом не защищаются от воздействия

Герконовое и поляризованное реле, устройство и принцип работы - student2.ru продуктов износа и старения изоляционных материалов. Другим не­достатком электромагнитных реле является их инерцион­ность, обусловленная значительной массой подвижных де­талей. Для получения необходимого быстродействия при­ходится применять специальные схемы форсировки, что приводит к снижению надежности и росту потребляемой мощности.

Перечисленные недостатки электромагнитных реле привели к созданию реле с герметичными контактами Герконовое и поляризованное реле, устройство и принцип работы - student2.ru (герконами).

Простейшее герконовое реле с замыкающим контактом изображено на рис.8, а. Контактные сердечники (КС) I и 2 изготавливаются из ферромагнитного материала с высокой магнитной проницаемостью (пермаллоя) и вварива­ются в стеклянный герметичный баллон 3. Баллон запол­нен инертным газом — чистым азотом или азотом с не­большой (около 3 %) добавкой водорода. Давление газа внутри баллона составляет (0,4—0,6) • 105 Па. Инертная среда предотвращает окисление КС. Баллон устанавлива­ется в обмотке управления 4. При подаче тока в обмотку возникает магнитный поток Ф, который проходит по КС 1 и 2 через рабочий зазор d между ними и замыкается по воздуху вокруг обмотки 4. Упрощенная картина магнитно­го поля показана на рис.9. Поток Ф при прохождении через рабочий зазор создает тяговую электромагнитную силу РЭ, которая, преодолевая упругость КС, соединяет их между собой. Для улучшения контактирования поверхно­сти касания покрываются тонким слоем (2—50 мкм) золо­та, родия, палладия, рения, серебра и др.

При отключении обмотки магнитный поток и электро­магнитная сила спадают и под действием сил упругости КС размыкаются. Таким образом, в герконовых реле отсутствуют детали, подверженные трению (места крепления якоря в электромагнитных реле).

В связи с тем что контакты в герконе управляются маг­нитным полем, герконы называют магнитоуправляемыми контактами.

На основе герконов могут быть созданы также реле с размыкающими и переключающими контактами. В гер­коне с переключающим контактом (рис.10, а) неподвиж­ные КС 1, 3 и подвижный 2 размещены в баллоне 4. При появлении сильного магнитного поля КС 2 притягивается к КС 1 и размыкается с КС 3. Один из КС переключающего геркона (например 2) может быть выполнен из не магнитного материала (рис.10, б). Герконовое реле (рис.10, в) имеет два подвижных КС 1,2, два неподвижных КС 5,6 и две обмотки управления 7, 8. При согласном включении обмоток замыкаются КС 1 и 2. При встречном включении обмоток КС 1 замыкается с КС 5, а КС 2 с КС 6. При отсутствии тока в обмотках все КС разомкнуты. Гер­коновое реле (рис.10, г) имеет переключающий контакт 3 сферической формы. При согласном включении обмоток 7 и 8 контакт 3 притягивается к КС 1 и КС 2 и замыкает их. После отключения обмоток 7 и 8 и при согласном вклю­чении обмоток 9 и 10 контакт 3 замыкает КС 5 и КС 6. Так как КС герконов выполняют функции возвратной пружины, им придаются определенные упругие свойства. Упругость КС обусловливает возможность их вибрации («дребезга») после удара, который сопутствует срабаты­ванию. Одним из способов устранения влияния вибраций является исполь­зование жидкометаллических контактов. В переключаю­щем герконе (рис.11, а) внутри подвижного КС 1 име­ется капиллярный канал, по которому из нижней части баллона 4 Герконовое и поляризованное реле, устройство и принцип работы - student2.ru поднимается ртуть 5.

Ртуть смачивает поверх­ности касания КС 1 с КС 2 или КС 3. В момент удара контактов при срабатывании возникает их вибрация. Из-за ртутной пленки на контактной поверхности КС 1 вибрация не приводит к разрыву цепи. В кон­струкции на рис.11,б между КС 2, КС 3 и ртутью 5 находится ферромагнитная изоляционная жидкость 6. При возникновении магнитного поля ферромагнит­ная жидкость 6 перемещается вниз, в положение, при котором поток будет наибольшим. Ртуть вытесняется вверх и замыкает КС 2 и КС 3. Следует отметить, что жидкометаллический контакт позволяет уменьшить переходное сопротивление и значительно уве­личить коммутируемый ток. На­личие ртути удлиняет процесс разрыва контактов, что уве­личивает время отключения реле.

Управление герконом можно осуществлять и с помощью постоянного магнита. Если постоянный магнит установлен вблизи геркона, его магнитный поток замыкается через КС, которые в результате этого находятся в замкнутом состоянии. Использование постоянного магнита совместно с управляющей катушкой позволяет создать герконовое реле с размыкающим контактом.

Конструкция герконового реле, показанная на рис.12, а, имеет разомкнутую магнитную цепь. По этой при­чине большая доля МДС катушки расходуется на прове­дение магнитного потока по воздуху. Кроме того, такая конструкция подвержена воздействию внешних магнитных полей, создаваемых расположенными рядом электротехни­ческими устройствами. Конструкция (рис.12, а)может и сама явиться источником электромагнитных помех для этих устройств. Для устранения этого недостатка магнит­ная система герконового реле заключается в кожух (эк­ран) из магнитомягкого материала (рис.12, б, в). При этом увеличивается магнитная проводимость Герконовое и поляризованное реле, устройство и принцип работы - student2.ru и снижа­ется МДС срабатывания. С целью увеличения эффектив­ности экрана паразитный зазор е (рис.12,6) стараются уменьшить либо увеличить его площадь (рис.12, в). Ре­гулирование значений МДС срабатывания и отпускания в условиях серийного производства может производиться за счет либо изменения зазора е (рис.12,6), либо изме­нения положения магнитного шунта (рис.12, г), либо i осевого

Герконовое и поляризованное реле, устройство и принцип работы - student2.ru смещения геркона в обмотке. Герконы могут быть установлены как внутри (рис.13, а), так и снаружи управляющей обмотки (рис.13,6).

Условия работы герконов в многоцепевых герконовых реле характеризуются следующими особенностями. Во-пер­вых, даже герконы одного типа и из одной партии имеют технологический разброс по МДС срабатывания и МДС отпускания.

Рис.12. Конструктивные выполнения герконовых реле.

Герконовое и поляризованное реле, устройство и принцип работы - student2.ru

Во-вторых, из-за неравномерности магнитного поля первым срабатывает геркон, находящийся в области с большей напряженностью поля. В-третьих, срабатывание одного геркона приводит к магнитному шунтированию других, в результате МДС срабатывания второго геркона после срабатывания первого увеличивается. В этом отно­шении конструкция с внешним расположением герконов (рис.13,б) предпочтительнее, чем с внутренним, так как обеспечивает меньшее взаимное влияние соседних герконов. Число герконов в одном реле может достигать 12 и более. По перечисленным причинам разные контакты многоцепевых герконовых реле замыкаются и размыкаются неодновременно, что является Рис.13. Многоцепевые герконовые реле.

их недостатком по сравне­нию с электромагнитными реле обычного типа.

Герконовое и поляризованное реле, устройство и принцип работы - student2.ru

Герконовые реле разнообразны по конструкции и на­значению. На рис.14 показан принцип действия герконового реле тока. В реле контроля большого тока ис­пользуется компоновка, по­казанная на рис.14. Кон­тролируемый ток I проходит по шине 1. Магнитное поле этого тока замыкается вокруг шины и по КС геркона 2. Ток срабатывания геркона может регулироваться за счет изменения угла Герконовое и поляризованное реле, устройство и принцип работы - student2.ru и рас­стояния х между шиной и герконом.

Наименьший ток срабатывания имеет место при Герконовое и поляризованное реле, устройство и принцип работы - student2.ru = 90°. При Герконовое и поляризованное реле, устройство и принцип работы - student2.ru =0 геркон не срабатывает при любом значении тока, так как магнит­ный поток в направлении продольной оси КС равен нулю.

Если кроме основного поля управления (МДС Fy) соз­дать дополнительное поляризующее магнитное поле за счет специальной обмотки (МДС Fn) или постоянного маг­нита, то герконовое реле становится поляри­зованным. Если

Герконовое и поляризованное реле, устройство и принцип работы - student2.ru

то под действием МДС Fn кон­такты геркона замкнутся. Для размыкания контактов МДС обмотки управления Fy должна быть меньше Fn и иметь об­ратный знак. Если продолжать увеличивать Fy, то при оп­ределенном ее значении произойдет повторное замыкание контактов геркона. В общем случае можно написать

Герконовое и поляризованное реле, устройство и принцип работы - student2.ru

где МДС поляризации Fn может быть положительной (совпадать по знаку с Fy) или отрицательной. В послед­нем случае

Герконовое и поляризованное реле, устройство и принцип работы - student2.ru

Для отпускания геркона имеем

Герконовое и поляризованное реле, устройство и принцип работы - student2.ru Герконовое и поляризованное реле, устройство и принцип работы - student2.ru

Поляризованные реле имеют значительно большую чувствительность по сравнению с неполяризованными. Мощность срабатывания их в 10-50 раз меньше, чем у неполяризованных реле. Поляризованные реле имеют высокую термическую стойкость и допускают продолжительное протекание тока до 20-30-кратного по отношению к току срабатывания. Вследствие малого хода якоря, легкости подвижной системы, малых постоянных времени катушек время срабатывания поляризованных реле может быть 2-3 мс. Разрывная способность контактов достигает 10-30 Вт. Поляризованные реле допускают большую частоту срабатывания и имеют высокую механическую и коммутационную износостойкость. Приме­няются они как реле защиты, автоматики и связи, реже — как реле управления электроприводами.

Реле могут выполняться с последовательной, параллельной или мостиковой магнитной цепью, с поляризацией от постоянного магнита или электромагнита.

В отличие от неполяризованных реле, у которых якорь может находиться только в двух положениях притянутом отпущенном), поляризованные реле могут выполняться с якорем, занимающим как два, так и три положения.

На рис.15изображено поляризованное реле типа ТРМ,применяемое в схемах телеграфии и в устройствах автоматики. Реле состоит из двух сердечников с катушками 7, двух П-образных постоянных магнитов 6, якоря 5, контактной системы — неподвижных 3 и подвижных. 2 контактов, основания 9, штепсельного разъема 10 и чехла 8.

Магнитная цепь реле построена по дифференциальной схеме и имеет нейтральную регулировку. Якорь укреплен на оси, вращающейся во втулках, запрессованных в корпусе. Контактная система (2 и 3) состоит из двух неподвижных стоек с микро­метрическими контактными винтами 4, позволяющими производить регулировку зазоров между контактами, и подвижных контактов, прикрепленных к двум плоским пружинам 1.

Герконовое и поляризованное реле, устройство и принцип работы - student2.ru В поляризованных реле контакты приводятся в дей­ствие поляризованным электромагнитом, в котором на якорь действуют два потока: поляризующий, создавае­мый постоянным магнитом, и поток, создаваемый ка­тушкой, по которой проходит управляющий ток.

Отличительной особенностью поляризованного элек­тромагнита является изменение направления силы, дей­ствующей на якорь, при изменении направления тока в катушке. На рис.16, а показана поляризованная система, получившая большое применение благодаря своей чув­ствительности и быстродействию. На том же рисунке да­на примерная картина потоков в системе. Потоки постоянного магнита в зазорах d1 и d2 равны.

Рис.16. Поляризованное реле.

Следует отметить, что сила на­жатия подвижного контакта на неподвижный опреде­ляется разностью зазоров d1 и d2. Чем ближе зазор d1 к зазору d2, тем меньше сила, действующая на контакты.

Поляризованные реле могут иметь различное испол­нение контактной системы (рис.17). В первом испол­нении контакты регулируются так, как показано на рис.17, а. При подаче тока в направлении срабаты­вания размыкается левый и замыкается правый контак­ты. При отключении тока снова замыкается левый кон­такт (однопозиционная настройка с преобладанием). В случае, изображенном на рис.17,б система имеет двухпозиционную настройку. Положение контактов за­висит от полярности предыдущего импульса тока.

Если якорь укреплен на плоской пружине, как это по­казано на рис.17, в, то он находится в нейтральном положении. В зависимости от полярности тока замыкает­ся левый или правый контакт. После отключения тока якорь возвращается в нейтральное положение.

Герконовое и поляризованное реле, устройство и принцип работы - student2.ru

Рис.17. Исполнения контактной системы поляризованного реле.

Наши рекомендации