Расчет эквивалентного сопротивления электрической цепи
Любое последовательное соединение можно преобразовать к последовательному соединению одного эквивалентного резистора и одного источника ЭДС. Причем, сопротивление эквивалентного резистора равно сумме всех сопротивлений входящих в соединение, а ЭДС эквивалентного источника равна алгебраической сумме ЭДС источников входящих в соединение.
R4=20 Ом, R5=40 Ом, R6=15 Ом (пример)
Путем сворачивания цепи с помощью преобразований последовательно и параллельно соединенных проводников, можно максимально упростить для дальнейшего расчета сколь угодно сложную схему. Исключением служат цепи содержащие сопротивления, соединенные по схеме звезда и треугольник.
9. СОЕДИНЕНИЕ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ
Схему еоедииения трех ветвей, образующих замкнутый контур с тремя узлами называют треугольником.
взаимные замены треугольника и звезды сопротивлений должны быть эквивалентными, т. е. при соответственно равных напряжениях между вершинами А, Б и В треугольника и звезды токи IA, IБ, 1В в подводящих проводах, соединяющих эти вершины с остальной частью цепи, должны остаться без изменений. Равенство токов должно выполняться при любых изменениях и переключениях в остальной части цепи и, в частности, при обрывах некоторых ее ветвей.
Рис 2.8 Соединение резисторов треугольником (а) и звездой (б)
Сопротивления эквивалентной звезды rа, rб, rв находятся в определенных соотношениях с сопротивлениями треугольника rаб, rбв, rва. Для выяснения этой зависимости допустим сначала, что в вершине А произошел обрыв подводящего провода и, следовательно, ток Iа=0. Сопротивления между двумя оставшимися присоединенными вершинами Б и В для обеих схем должны быть одинаковы, чтобы были соответственно равны токи IБ и Iв в обеих схемах.
Чтобы преобразовать треугольник в звезду при заданных сопротивлениях сторон треугольника rаб,rбв, rва, требуется определить сопротивления лучей эквивалентной звезды rа, rб, rв . Для этого составим полусумму левых и правых частей уравнений (2.15) и (2.16):
и вычтем из полученного выражения уменьшенные вдвое левую и правую части (2.14). В результате получим
(2.17)
Аналогично получим
(2.18)
(2.19)
сли сопротивления треугольника равны друг другу: rаб = rбв=rва=rΔ, то будут равны друг другу и сопротив
ления звезды, т. е. rа = rб=rв=r λ, причем из формул (2.17)—(2.19) получается простое соотношение
(2.20)
При обратном преобразовании звезды в эквивалентный треугольник, т. е. при заданных сопротивленияхrа, rб, rв, надо решить три уравнения (2.17)—(2 19) относительно сопротивлений rаб, rбв:
Таким образом, сопротивление стороны эквивалентного треугольника равно сумме сопротивлений двух лучей звезды, присоединенных к тем же вершинам, что и сторона треугольника, и их произведения, деленного на сопротивление третьего луча звезды.
11. Режимы работы электрической цепи
· Режим короткого замыкания ( КЗ )
В режиме короткого замыкания источник питания замкнут накоротко. Режим является аварийным. Ток короткого замыкания КЗ во много раз превышает значение номинального тока.
Rн = 0 I = max
· Режим холостого хода ( ХХ )
В режиме холостого хода источник питания отсоединен от нагрузки и работает вхолостую. Сопротивление внешнего участка цепи и ток равен 0. Rн = ∞
· Режим согласованной нагрузки
Свойства электрической цепи – наибольшая мощность нагрузки развивается источником, когда сопротивление нагрузки ровно внутреннему сопротивлению источника.
Rн = I0
Из графика видно с ростом сопротивления нагрузки растёт мощность на нагрузке при Rн = I0 мощность нагрузки наибольшая при дальнейшем росте Rн – PRн уменьшается.
Мощность электрического тока
P = UI