МАТЕРИАЛЫ ДЛЯ РАБОТЫ В АУДИТОРИИ. Проверьте домашнее задание.
(ЗАНЯТИЕ ВТОРОЕ)
Проверьте домашнее задание.
5.16. Ответьте развернуто на следующие вопросы:
1. What is the function of the microprocessor? 2. What are the advantages of microcomputers in comparison with random-logic design? 3. What technology made the smaller size and lower cost of electronic devices possible? 4. What are the main factors resulting in greater cost savings of electronic devices? 5. What limits the numeric range of data the processor can handle? 6. What features of microprocessors are to be considered when dealing with their applications?
Определите контекстуальное значение выделенных слов.
5.17. Переведите, обращая внимание на контекстуальное значение слов set, time, times:
1) 1. The relationship must be set properly. 2. Industrial research in materials faces a different set of problems. 3. The microprocessor has a sophisticated instrument set. 4. This interface sets board dimensions.
2) 1. Computing time was a little more than five times longer than that required for a single iteration of the gradient procedure. 3. The problem of timing is very important as information is being read into and put of the flip-flops at the same time. 4. The complete photoresist process must be repeated each time the silicon oxide is selectively removed. 5. Although improvements will reduce the required computation times, emulation will nevertheless be restricted to real time systems having slow response times.
Учитесь читать и переводить.
Текст 5.4. Прочитайте текст. Назовите рассматриваемые в тексте темы. Озаглавьте текст.
A microprocessor is a tool that deals with memories by reading and writing process. At first sight it is all it can actually do.
One can consider that it is surprising how a computer can answer a question only by dealing with 0 and 1 but the fact is that it works.
Only human brain can teach a computer how to " listen" to a question and "elaborate" an answer only by dealing with 0 and 1. A microprocessor is the next step, dealing with memories in complete "traditional" 8 bit bytes.
So the microprocessor is addressing a memory, a location inside the selected memory, and then achieves a read or write operation.
Additional tools have been designed to allow exchanges with external memories or devices.
First of all an address bus, for instance 16 bits allowing a selection of 1 word among 65.000. Then comes the data bus, generally 8 bits allowing read or write operation in the selected location of the memory. At last comes the control bus, for instance including memory read or write and I/O read or write, giving 4 wires the indication of the type exchange and the position of the receiver, inside or outside the system.
Текст 5.5. Бегло прочитайте текст и найдите информацию о секционных микропроцессорах. Переведите текст письменно.
Present microprocessors vary in their detailed architecture depending on their manufacture and in some cases on the particular semiconductor technology adopted. One of the major distinctions is whether all the elements of the microprocessor are divided among several identical modular chips that can be linked in parallel, the total number of chips depending on the length of the "word" the user wants to process: four bits (binary digits), eight bits, 16 bits or more. Such a multichip arrangement is known as a bit-sliced organization. A feature of bit-sliced chips made by the bipolar technology is that they are "microprogrammable": they allow the user to create specific sets of instructions, a definite advantage for many applications.
Учитесь говорить.
5.18. Обсудите следующие темы:
1. The microprocessor has altered the architecture of modern computer systems. 2. The organization of a distributed-processing system.
5.19. Прочитайте текст и составьте схему, показывающую основные направления исследований по разработке электронных микропроцессорных схем обработки данных и управления. Используйте выделенные слова в качестве ориентиров.
The architectural research and development efforts are directed at integrated circuits, computer architecture, operating systems, and programming languages.
Integrated circuit researchers are examining complementary metal-oxide semiconductor (CMOS) design styles, the effects of scaling very large scale integration (VLSI) circuits and control and clocking issues. Computer architecture researchers are studying multiprocessor address trace analysis, cache consistency, virtually-tagged caches, in-cache address translation, multi-level cache design, coprocessor interfaces, instruction delivery, hardware support, and floating-point implementations. Operating system researchers are investigating network file systems, network page servers, the effects of large physical memories on virtual memory implementations, and workload distribution. Programming language researchers are examining parallel garbage collection algorithms, techniques for specifying parallel programs, and methods of compiling parallel Lisp programs.