Ограничения и предостережения. Концепция анализа возможностей процесса полностью применима к статистически управляемому процессу
Концепция анализа возможностей процесса полностью применима к статистически управляемому процессу. Поэтому анализ возможностей процесса следует выполнять в сочетании с методами управления.
Оценки процента несоответствующей продукции делаются в предположении о нормальности распределения. Когда требования нормальности распределения не выполняются, с оценками следует обращаться осторожно, особенно в случае процессов с высокими показателями изменчивости.
Показатели возможностей могут вводить в заблуждение, когда распределение процесса является существенно ненормальным.
В этих случаях оценки процента несоответствующих изделий следует основывать на методах анализа, разработанных для таких распределений. Аналогично в случае процессов, которые находятся под воздействием систематических неслучайных причин вариации, таких как износ инструмента, для вычисления и исследования возможностей должны использоваться специальные методы.
Примеры применений
Анализ возможностей процесса используют для назначения рациональных технических требований в спецификациях на продукцию, гарантирующих, что составляющие вариаций согласуются с увеличениями допуска для собранной продукции. Наоборот, когда необходимы жесткие допуски, от изготовителей комплектующих требуется, чтобы был достигнут заданный уровень возможностей процесса для обеспечения высокого объема производства продукции при минимальных потерях.
Высокие значения возможностей процесса (например, Ср > 2) иногда используют на уровне комплектующих и подсистем, чтобы достичь необходимого качества и надежности сложных систем.
Анализ возможностей машины используют для оценки ее способности выполнять работу в соответствии с заданными требованиями, а также для принятия решений о закупке или ремонте оборудования.
Производители приборов в автомобильной, космической, электронной, продовольственной, фармацевтической и медицинской отраслях обычно используют анализ возможностей процесса как главный критерий оценки поставщиков и продукции. Это позволяет производителю минимизировать прямой контроль закупленных изделий и материалов.
Некоторые компании, занимающиеся производством или оказанием услуг, отслеживают показатели возможностей процессов, чтобы выявлять потребности в усовершенствовании процессов и проверять эффективность таких усовершенствований.
Регрессионный анализ
Предмет
Регрессионный анализ связывает поведение исследуемой характеристики (обычно называемой «переменной отклика») с потенциально причинными факторами (обычно называемыми «независимыми переменными»). Такие соотношения определяются моделью, которую разрабатывают на основе научных, экономических, инженерных или других исследований. Цель регрессионного анализа состоит в том, чтобы помочь понять потенциальную причину вариаций в отклике и объяснить, насколько влияет на эту вариацию каждый фактор. Это достигается установлением статистических связей вариации переменной отклика с вариациями независимых переменных и получением лучшей согласованности путем минимизации отклонений между предсказанным и фактическим откликом.
Область распространения
Регрессионный анализ позволяет:
- проверять гипотезы относительно влияния независимых переменных на отклик и использовать эту информацию для оценок изменений в отклике при заданном изменении независимой переменной;
- предсказывать значения переменной отклика при заданных значениях независимых переменных;
- предсказывать (с заданным уровнем доверия) интервал значений, в котором будет находиться ожидаемое значение отклика при заданном значении независимой переменной;
- оценивать направление и степень связи между переменной отклика и независимой переменной (хотя такая связь не означает причинную зависимость). Такая информация может использоваться для определения влияния изменения одного фактора (например, температуры) на выходные характеристики процесса, в то время как другие факторы остаются постоянными.
Достоинства
Регрессионный анализ может обеспечить понимание соотношений между различными факторами и наблюдаемым откликом. Такое понимание может помочь в принятии решений, связанных с изучаемым процессом, и будет способствовать улучшению процесса.
Регрессионный анализ позволяет в сжатом виде представлять данные отклика, сравнивать различные, но связанные наборы данных и анализировать потенциальные отношения «причина- следствие». Регрессионный анализ позволяет оценить относительные величины влияния независимых переменных, а также относительный вклад этих переменных. Эта информация очень важна при управлении или улучшении выходных характеристик процесса.
Регрессионный анализ обеспечивает определение оценки величины и источника влияний на отклик, вызванных факторами, которые или не измерены, или не исследовались при анализе. Эта информация может использоваться для совершенствования системы измерения или управления процессом.
Регрессионный анализ может использоваться для прогнозирования значений переменной отклика при заданных значениях одной или более независимых переменных, а также для прогнозирования влияния изменений независимых переменных на полученный или предсказанный отклик. При решении ряда задач проведение таких исследований может быть полезно для оценки эффективности предполагаемых действий.