Собственные и примесные полупроводники
Собственными полупроводниками, или полупроводниками типа i (от англ. intrinsic — собственный), называют полупроводники, кристаллическая решетка которых в идеальном случае не содержит примесных атомов другой валентности. В реальных условиях в кристаллической решетке полупроводника всегда существуют примеси, однако их концентрация столь ничтожна, что ею можно пренебречь. Атомы в кристаллической решетке полупроводника расположены упорядоченно на таких расстояниях друг от друга, что их внешние электронные оболочки перекрываются, и у электронов соседних атомов появляются общие орбиты, посредством которых образуются ковалентные связи. Если валентность атомов равна четырем, то вокруг каждого из атомов, помимо четырех собственных, вращаются еще четыре «чужих» электрона, вследствие чего вокруг атомов образуются прочные электронные оболочки, состоящие из восьми обобществленных валентных электронов, что иллюстрирует плоская модель кристаллической решетки, показанная на рис. 1.41. В узлах кристаллической решетки арсенида галлия чередуются пятивалентные атомы мышьяка и трехвалентные атомы галлия, вокруг которых также образуются электронные оболочки из восьми обобществленных электронов.
При сообщении кристаллической решетке некоторого дополнительного количества энергии, например путем нагрева, электрон может покинуть ковалентную связь и превратиться в свободный носитель электрического заряда. В результате ковалентная связь становится дефектной, в ней образуется «вакантное» место, которое может занять один из валентных электронов соседней связи. При этом вакантное место перемещается к другому атому. Перемещение вакантного места внутри кристаллической решетки принято рассматривать как перемещение некоторого положительного заряда, называемого дыркой. Величина этого заряда равна заряду электрона. Процесс образования свободных электронов и дырок под воздействием тепла называют тепловой генерацией. Она характеризуется скоростью генерации G, определяющей количество пар носителей заряда, генерируемых в единицу времени. Помимо тепловой генерации возможна генерация под воздействием света или каких-либо других энергетических воздействий. Возникшие в результате генерации носители заряда находятся в состоянии хаотического движения, средняя тепловая скорость которого определяется формулой
Двигаясь хаотически, электроны могут занимать вакантные места в ковалентных связях. Это явление называют рекомбинацией и характеризуют скоростью рекомбинации R, определяющей количество пар носителей заряда, исчезающих в единицу времени. Каждый из подвижных носителей заряда существует («живет») в течение некоторого промежутка времени, среднее значение которого называют временем жизни носителей заряда и обозначают для электронов τn, а для дырок τр. В собственном полупроводнике τn = τp = τi.
В равновесном состоянии генерация и рекомбинация протекают с одинаковой скоростью (R = G), поэтому в полупроводнике устанавливается собственная концентрация электронов, обозначаемая ni, и собственная концентрация дырок, обозначаемая pi. Поскольку электроны и дырки генерируются попарно, то в собственном полупроводнике выполняется условие и, =рг При комнатной температуре в кремнии ni = pi = 1,4*1010 см-3, а в германии ni = pi = 2,5*1013 см-3. С увеличением температуры собственные концентрации электронов и дырок растут по экспоненциальному закону.
Полупроводники, кристаллическая решетка которых помимо четырехвалентных атомов содержит атомы с валентностью, отличающейся от валентности основных атомов, и их концентрация превышает собственную концентрацию носителей заряда, называют примесными. Если валентность примесных атомов больше валентности основных атомов, например, в кристаллическую решетку кремния введены пятивалентные атомы мышьяка, то пятый валентный электрон примесного атома оказывается незанятым в ковалентной связи, то есть становится лишним (рис. 1.42, а) и легко отрывается от атома, становясь свободным. При этом примесный атом оказывается ионизированным и приобретает положительный заряд. Такой полупроводник называют электронным, или полупроводником типа п (от лат. negative — отрицательный), а примесные атомы называют донорами.
Если в кристаллическую решетку кремния введены атомы трехвалентной примеси, например атомы алюминия, то одна из ковалентных связей оказывается незаполненной (рис. 1.42, б). При незначительном тепловом воздействии электрон одной из соседних связей может перейти в незаполненную связь, а на том месте, откуда пришел электрон, возникает дырка. При этом примесный атом приобретает отрицательный заряд. Такой полупроводник называют дырочным, или полупроводником типа р (от лат. positive — положительный), а примесные атомы называют акцепторами.
С точки зрения зонной теории, при тепловой генерации происходит переход электронов из валентной зоны в зону проводимости, а при рекомбинации — их возврат из зоны проводимости в валентную зону (рис. 1.43, а). Скорость тепловой генерации обратно пропорциональна ширине запрещенной зоны и прямо пропорциональна температуре Т. Для германия при Т=- 300 К значение = 0,72 эВ, для кремния = 1,12 эВ, для арсенида галлия = 1,41 эВ. Чем шире запрещенная зона, тем меньше концентрация собственных носителей заряда.
В электронном полупроводнике из-за наличия пятивалентных примесных атомов в пределах запрещенной зоны вблизи дна зоны проводимости появляются примесные уровни Еd (рис. 1.43, б). Поскольку на один примесный атом приходится примерно 106-108 атомов основного вещества и расстояние между ними большое, то они практически не взаимодействуют друг с другом. Поэтому примесные уровни не расщепляются, и их изображают как один локальный уровень, на котором находятся «лишние» валентные электроны, не занятые в ковалентных связях.
Энергетический интервал называют энергией ионизации доноров (для кремния = 0,05 эВ, для германия = 0,01 эВ). Электроны, находящиеся на уровне Ed , переходят с уровня Еd в зонaу проводимости. При комнатной температуре практически все доноры ионизированы, поэтому концентрация электронов примерно равна концентрации доноров (nn = Nd).
Наряду с ионизацией примеси в электронном полупроводнике происходит тепловая генерация, но количество образующихся при этом электронов и дырок существенно меньше, чем в собственном полупроводнике. Объясняется это тем, что электроны, полученные в результате ионизации донорных атомов, занимают нижние энергетические уровни зоны проводимости и переход электронов из валентной зоны может происходить только на более высокие уровни зоны проводимости. Но для таких переходов электроны должны обладать более высокой энергией, чем в собственном полупроводнике, и поэтому значительно меньшее число электронов способно их осуществить. Поэтому в электронном полупроводнике концентрация дырок рn меньше концентрации рi Электроны в электронном полупроводнике называют основными носителями заряда, а дырки — неосновными.
В дырочном полупроводнике за счет введения трехвалентных примесных атомов в пределах запрещенной зоны появляется примесный уровень Ea, (рис. 1.43, в), который заполняется электронами, переходящими на него из валентной зоны. Поэтому в полупроводнике устанавливается высокая концентрация дырок рP. При комнатной температуре практически все акцепторы ионизированы, поэтому концентрация дырок примерно равна концентрации акцепторов (рP = NP).
В дырочном полупроводнике так же, как и в электронном, происходит тепловая генерация, однако количество образующихся при этом пар носителей заряда невелико. Объясняется это теми же причинами, что и для электронного полупроводника. На уровни акцепторов переходят электроны с энергетических уровней, расположенных вблизи потолка валентной зоны, а переход электронов из валентной зоны в зону проводимости совершают электроны, расположенные на более низких уровнях валентной зоны, для чего необходимо затратить более высокую энергию, чем в собственном полупроводнике. Поэтому концентрация электронов nP меньше концентрации ni. Дырки в дырочном полупроводнике называют основными носителями заряда, а электроны — неосновными.