Вах лавинного транзистора, область использования
Лавинный транзистор, транзистор, устойчиво работающий при напряжениях на коллекторном переходе, близких к напряжению пробоя. В этих условиях имеет место ударная ионизация, приводящая к увеличению числа носителей заряда в коллекторном переходе транзистора. Устойчивая работа Л. т. в предпробойной области обеспечивается повышенной однородностью распределения электрического поля по площади коллекторного перехода.
- характеристическое напряжение лавинного пробоя.
В т1 отпирается эмиттер, переходный ток коллектора увеличивается, но при этом увеличивается коэф переноса alpha, а дифференциальное сопротивление уменьшается.
Применяется в генераторах коротких импульсов с крутым фронтом и позволяет относительно просто формировать мощные импульсы тока (до нескольких А) со временем нарастания импульса менее 10^-9 сек. Возможность генерирования ЛТ. коротких импульсов с частотой повторения до 100 МГц используется в устройствах совпадения импульсов и в стробоскопических осциллографах. Наличие участка отрицательного сопротивления на вольтамперной характеристике ЛТ и малое эффективное значение времени пролёта носителей заряда от эмиттера к коллектору позволяют применять его также в генераторах и усилителях электрических колебаний дециметрового и сантиметрового диапазонов волн.
62. Динистор: структура и принцип действия
Динистор - это неуправляемый тиристор, имеющий четырехслойную p-n-p-n-структуру, изготовленную на основе кремния (рис. 5.1).
Рис. 5.1. Структура динистора
Анодом (А), который обычно связан с положительным полюсом источника напряжения, является область р-типа, катодом (К)- область n-типа.
Крайние области динистора (р1 и n2) называются эмиттерами, средние (р2 и n1) - базами. Между областями с различным типом проводимости образуются p-n-переходы (П1, П2, П3), каждый из которых в равновесии характеризуется контактной разностью потенциалов Dj0i (см. п. 1.2.1) величиной примерно один вольт за счет специального подбора степени легирования (концентрации примесей) каждой области.
Переходы П1 и П2 называются эмиттерными, а переход П3 - коллекторным.
При приложении напряжения переходы П1 и П3 в прямом, а П2 в обратном смещении, поэтому все напряжение припадет к П2. 1 - если увеличивать напряжение, то в области p1 и p2 будут инжектироваться заряды, эти носители приближаются к переходу П2 и, перебрасываясь через него, образуют ток I0, при малом напряжении это напряжение почти полностью поглощается на П2.
2 - Ток через П2 увеличивается, но сопротивление уменьшается значительно сильнее, поэтому напряжение П2 уменьшается
3 – При открытии всех переходов ток возрастает и ограничивается внешним сопротивлением
63. Динистор: ВАХ , основные соотношения для токов
Динистор - это неуправляемый тиристор, имеющий четырехслойную p-n-p-n-структуру, изготовленную на основе кремния (рис. 5.1).
При приложении напряжения переходы П1 и П3 в прямом, а П2 в обратном смещении, поэтому все напряжение припадет к П2. 1 - если увеличивать напряжение, то в области p1 и p2 будут инжектироваться заряды, эти носители приближаются к переходу П2 и, перебрасываясь через него, образуют ток I0, при малом напряжении это напряжение почти полностью поглощается на П2.
2 - Ток через П2 увеличивается, но сопротивление уменьшается значительно сильнее, поэтому напряжение П2 уменьшается
3 – При открытии всех переходов ток возрастает и ограничивается внешним сопротивлением
Alpha1 и alpha2 – коэф передачи тока соответствующих переходов
64. Тиристор: структура, принцип действия
Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с четырёхслойной структурой р-n-p-n-типа, обладающий в прямом направлении двумя устойчивыми состояниями — состоянием низкой проводимости (тиристор заперт) и состоянием высокой проводимости (тиристор открыт). В обратном направлении тиристор обладает только запирающими свойствами. Т.е тиристор — это управляемый диод. Тиристоры подразделяются на тринисторы, динисторы и симисторы. Перевод тиристора из закрытого состояния в открытое в электрической цепи осуществляется внешним воздействием на прибор: либо воздействие напряжением (током), либо светом (фототиристор). Тиристор имеет нелинейную разрывную вольтамперную характеристику (ВАХ).
Основная схема тиристорной структуры представлена на рис. 1. Она представляет собой четырёхполюсный p-n-p-n прибор, содержащий три последовательно соединённых p-n перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою — катодом. В общем случае p-n-p-n прибор может иметь два управляющих электрода (базы), присоединённых к внутренним слоям. Прибор без управляющих электродов называется диодным тиристором (или динистором). Прибор с одним управляющим электродом называют триодным тиристором или тринистором (или просто тиристором).
Режим обратного запирания
Два основных фактора ограничивают режим обратного пробоя и прямого пробоя:
- Лавинный пробой.
- Прокол обеднённой области.
В режиме обратного запирания к аноду прибора приложено напряжение, отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом. В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины Wn1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше Wn1) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2).
Режим прямого запирания
При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2. Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ. В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения VBF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи.
Режим прямой проводимости
Когда тиристор находится во включенном состоянии, все три перехода смещены в прямом направлении. Дырки инжектируются из области p1, а электроны — из области n2, и структура n1-p2-n2 ведёт себя аналогично насыщенному транзистору с удалённым диодным контактом к области n1. Следовательно, прибор в целом аналогичен p-i-n (p+-i-n+)-диоду…
65. Тиристор: ВАХ при управлении по катоду, и основные соотношения для токов
Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с четырёхслойной структурой р-n-p-n-типа, обладающий в прямом направлении двумя устойчивыми состояниями — состоянием низкой проводимости (тиристор заперт) и состоянием высокой проводимости (тиристор открыт). В обратном направлении тиристор обладает только запирающими свойствами. Т.е тиристор — это управляемый диод. Тиристоры подразделяются на тринисторы, динисторы и симисторы. Перевод тиристора из закрытого состояния в открытое в электрической цепи осуществляется внешним воздействием на прибор: либо воздействие напряжением (током), либо светом (фототиристор). Тиристор имеет нелинейную разрывную вольтамперную характеристику (ВАХ).
Основная схема тиристорной структуры представлена на рис. 1. Она представляет собой четырёхполюсный p-n-p-n прибор, содержащий три последовательно соединённых p-n перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою — катодом. В общем случае p-n-p-n прибор может иметь два управляющих электрода (базы), присоединённых к внутренним слоям. Прибор без управляющих электродов называется диодным тиристором (или динистором). Прибор с одним управляющим электродом называют триодным тиристором или тринистором (или просто тиристором).
ВАХ тиристора (с управляющими по катоду) приведена на рис 2. Она имеет несколько участков:
Между точками 0 и 1 находится участок, соответствующий высокому сопротивлению прибора — прямое запирание.
В точке 1 происходит включение тиристора.
Между точками 1 и 2 находится участок с отрицательным дифференциальным сопротивлением.
Участок между точками 2 и 3 соответствует открытому состоянию (прямой проводимости).
В точке 2 через прибор протекает минимальный удерживающий ток Ih.
Участок между 0 и 4 описывает режим обратного запирания прибора.
Участок между 4 и 5 — режим обратного пробоя.
По типу нелинейности ВАХ тиристор относят к S-приборам.
Alpha1 и alpha2 – коэф передачи тока соответствующих переходов