Емкость мдп-структуры
По своему строению структура металл–диэлектрик–полупроводник (МДП) представляет собой плоский конденсатор, одна из обкладок которого выполнена из полупроводника. Наличие полупроводника приводит к тому, что в структуре появляются дополнительные слои, как хорошо проводящие электрический ток, так и плохо. Эти слои имеют достаточно большие размеры по сравнению с металлом, поскольку радиус экранирования Дебая в полупроводниках в 100–1000 раз больше, чем в металле. В результате емкость МДП-структуры представляется двумя последовательно соединенными емкостями: емкостью диэлектрика Сd и емкостью полупроводника Сs. На рис. 9 представлены конструкция (а) и энергетическая диаграмма структуры в равновесном состоянии (б). Обратите внимание, в равновесном состоянии (U=0) в полупроводнике присутствует искривление энергетических зон. Это связано в первую очередь с контактной разностью потенциалов Ме–п/п. Более того, для типичного сочетания Al–Si эта разность потенциалов одного знака как для n-типа, так и для p-типа полупроводника.
Рис. 9. МДП-структура: а) конструкция; б) энергетическая диаграмма
Полная емкость структуры определяется выражением
. (4)
Емкость диэлектрика определяется конструктивными параметрами и не зависит от напряжения смещения, т.е. является линейным элементом:
, (5)
где εs – диэлектрическая проницаемость материала диэлектрика; S – площадь управляющего электрода; dd– толщина диэлектрика.
Емкость полупроводника Сs является нелинейным элементом, т.к. определяется как конструктивными параметрами, так и напряжением смещения U. При этом выделяют несколько режимов работы: обогащения, плоских зон, обеднения и инверсии. Энергетические диаграммы структуры и схематическое распределение зарядов показано на рис. 10. Первичной характеристикой нелинейной емкости является зависимость заряда QS от потенциала полупроводника js (рис. 11). Вид этой характеристики показывает существенную нелинейность емкости объемного пространственного заряда.
Рис. 10. Энергетические диаграммы и схематическое распределение зарядов в МДП-структуре:
а) – обогащения; б) – плоских зон; в) –обеднения; г) –инверсии
Рис. 11. Зависимость Qs(js)
На рис. 12 показаны вольт-фарадные характеристики (С-V-характеристики) для различных режимов МДП-структуры: обогащения (js<0), обеднения (0<jS <jB), слабой (jB<jS <2jB) и сильной (jS >2 jB) инверсий. Начиная с области слабой инверсии в зависимости от частоты измерительного сигнала и темпа изменения напряжения смещения могут иметь место равновесные – низкочастотная (кривая а) и высокочастотная (кривая б) – характеристики и неравновесная высокочастотная характеристика (кривая в). На этом рисунке, кроме упомянутых выше, использованы следующие обозначения: СB – емкость плоских зон, соответствует поверхностному потенциалу jS = 0; Сmin– минимальная низкочастотная емкости; C’min – минимальная высокочастотная емкость.
Рис. 12. С-V-характеристики идеальной МДП-структуры
Зависимость емкости идеальной МДП-структуры от напряжения при отрицательных значениях последнего отвечает аккумуляции дырок у границы раздела (см. рис. 12). В этом режиме дифференциальная емкость полупроводника существенно больше емкости диэлектрика, поэтому полная емкость структуры близка к величине Сd. Когда напряжение, приложенное к МДП-структуре, становится больше нуля, в приповерхностном слое полупроводника образуется обедненная область, которая действует как добавочный слой диэлектрика. Это приводит к уменьшению полной емкости МДП-структуры. Затем, проходя через минимум, обозначенный на рас. 12 символом Сmin, полная дифференциальная емкость структуры резко возрастает, снова приближаясь к величине Сd.
Последнее обусловлено тем, что в данной области напряжений у границы раздела с диэлектриком образуется электронный инверсный слой, дифференциальная емкость (аналогично диффузионной емкости p-n–перехода) которого также значительно превышает емкость диэлектрика. Нарастание емкости в области положительных смещений зависит от того, успевает ли концентрация инверсных электронов следовать за изменениями приложенного к структуре переменного напряжения, с помощью которого осуществляется измерение емкости.
Данный режим осуществляется лишь при сравнительно малых частотах. При более высоких частотах увеличения дифференциальной емкости структуры при положительных напряжениях не наблюдается (кривая б на рис. 12). Кривая в на этом рисунке соответствует вольт-фарадной характеристике идеальной МДП-структуры в условиях глубокого обеднения (импульсное напряжение смещения). На кривых, приведенных на рис. 12, указаны также характерные значения поверхностного потенциала.
Для обедненного слоя МДП-структуры решение уравнения Пуассона дает такой же результат как и в случае барьера Шоттки, поэтому можно воспользоваться уравнением (2) для определения концентрации примеси в полупроводнике.
Из всех МДП-структур наиболее важными являются структуры металл –SiO2, –Si (МОП). Отличие характеристик реальных МОП-структур от соответствующих зависимостей идеальных МДП-конденсаторов обусловлено существованием сложного распределения зарядов в окисле и возникновение поверхностного заряда в кремнии, обусловленного поверхностными ловушками (рис.13).
Рис. 13. Заряды в окисле
Основная причина возникновении поверхностных состояний в запрещенной зоне п/п заключается в том, что сама граница раздела является нарушением пространственной периодичности кристаллической решетки. При изменениях приложенного к МДП-структуре напряжения положение энергетических уровней поверхностных ловушек изменяется, следуя за смещением краев разрешенных зон полупроводника на границе раздела. В результате происходит изменение зарядного состояния этих ловушек.
Исходя из вышеизложенного следует, что эквивалентная схема МДП-структуры оказывается довольно сложной (рис. 14). На этом рисунке Сd – емкость диэлектрика; Rs – сопротивление полупроводника; Соб, Rоб – емкость и сопротивление обедненного слоя полупроводника соответственно; Синв, Rинв – емкость и сопротивление инверсного слоя полупроводника; Спс, Rпс – емкость и сопротивление, обусловленные поверхностными ловушками в полупроводнике. Однако такая полная схема будет реализована только при низкочастотных измерениях в режиме сильной инверсии.
Рис. 14. Полная эквивалентная схема МДП-структуры
При других режимах работы МДП-структуры схема будет изменятся (рис. 15).
Рис. 15. Эквивалентные схемы МДП-структуры при разных режимах:
а) – обогащения; б) – обеднения и инверсии при ВЧ измерениях
(без учета поверхностных состояний)
В частности, в режиме обогащения никаких емкостей в полупроводнике не существует, и эквивалентная схема будет состоять из двух элементов: Сd – емкость диэлектрика и Rs – сопротивление полупроводника. В режиме обеднения (без учета поверхностных состояний) эта схема дополняется Соб и Rоб – емкостью и сопротивлением обедненного слоя полупроводника. Аналогичная схема получается и в инверсном режиме при высокочастотных измерениях, поскольку заряд подвижных носителей не успевает изменяться при изменении напряжения измерительного сигнала (как в данной лабораторной работе).