Тема 2.1. Характеристики лазерного излучения
Лазер – это генератор оптических волн, использующий энергию индуцированно излучающих атомов или молекул в средах с инверсной заселенностью уровней энергии, обладающие свойством усиливать свет конкретных длин волн. Чтобы многократно усилить свет применяют оптический резонатор, который состоит из 2 зеркал. За счет различных способов накачки в активном элементе создается активная среда.
Лазеры обладают высокой степенью монохроматичности, высокой степенью направленности и поляризованности излучения при значительной его интенсивности и яркости, высокой степенью временной и пространственной когерентности, могут перестраиваться по длинам волн, могут излучать световые импульсы рекордно короткой длительности, в отличие от тепловых источников света.
Как и обычный свет, лазерное излучение, отражается, поглощается, переизлучается и рассеивается биологической средой. Все из перечисленных процессов несут информацию о микро и макроструктуре объекта, движении и форме отдельных его частей.
Монохроматичность представляет собой высокую спектральную плотность мощности лазерного излучения, или существенную временную когерентность излучения, обеспечивает: проведение спектрального анализа с разрешением, на несколько порядков превышающим разрешение традиционных спектрометров; высокую степень селективности возбуждения определённого сорта молекул в их смеси, что существенно для биотехнологий; реализацию интерферометрических и голографических способов диагностирования биообъектов.
Лазерные установки делятся на следующие группы:
1) Лазеры с высокой мощностью на неодиме, оксиде углерода, углекислом газе, аргоне, рубине, парах металлов и др.;
2) Лазеры, с низкоэнергетическим излучением (гелий-кадмиевые, гелий-неоновые, на азоте, на красителях и др.), которые не оказывают ярко выраженного теплового воздействия на ткани организма.
Свои названия лазерные установки получают в соответствии с активной средой, и более развернутая классификация содержит твердотельные, газовые, полупроводниковые, жидкостные лазеры и другие. Перечень твердотельных лазеров включает в себя: неодимовый, рубиновый, александритовый, эрбиевый, гольмиевый; к газовым относятся: аргоновый, эксимерный, на парах меди; к жидкостным: лазеры, которые работают на растворах красителей и другие.
Важнейшими свойствами, присущими лазерному излучению являются: монохроматичность, когерентность, направленность, поляризация.
Когерентность (от латинского cohaerens находящийся в связи, связанный) – согласованное протекание во времени нескольких колебательных волновых процессов одной частоты и поляризации; свойство двух или более колебательных волновых процессов, определяющее их способность при сложении взаимно усиливать или ослаблять друг друга. Когерентными колебания будут называться, если разность их фаз остается постоянной на протяжении временного отрезка и при суммировании колебаний получается колебание той же частоты. Простейший пример двух когерентных колебаний – два синусоидальных колебания одинаковой частоты.
Когерентность волны подразумевает, что в различных точках волны осцилляции происходят синхронно, другими словами разность фаз между двумя точками не связана со временем. Отсутствие когерентности означает, что разность фаз между двумя точками не постоянна, следовательно меняется с течением временем. Данная ситуация возникает, в том случае, если волна будет сгенерирована не единым источником излучения, а группой одинаковых, но независимых друг от друга излучателей.
Монохроматичность (греч. monos - один, единственный + chroma - цвет, краска) - излучение одной определенной частоты или длины волны. Излучение условно можно принимать за монохроматическое, если оно относится к диапазону спектра 3-5 нм. Если в системе существует только один разрешённый электронный переход из возбуждённого в основное состояние, то создается монохроматическое излучение.
Поляризация – симметричность в распределении направления вектора напряженности электрического и магнитного полей в электромагнитной волне касаемо направления ее распространения. Волна будет называться поляризованной, в том случае, если две взаимно перпендикулярные составляющие вектора напряженности электрического поля совершают колебания с постоянной во времени разностью фаз. Неполяризованной - если изменения происходят хаотично. В продольной волне возникновени поляризации не возможно, так как возмущения в данном типе волн всегда совпадают с направлением распространения. Лазерное излучение является высокополяризованным светом (от 75 до 100 %).
Направленность (одно из наиболее важных свойств лазерного излучения) - способность излучения выходить из лазера в виде светового луча с очень низкой расходимостью. Данная черта является простейшим следствием из того, что активная среда размещена в резонаторе (например плоскопараллельный резонатор). В таком резонаторе поддерживаются только электромагнитные волны, распространяющиеся вдоль оси резонатора или в непосредственной близости к ней.
Главными характеристиками лазерного излучения являются: длина волны, частота, энергетические параметры. Данные характеристики являются биотропными, то есть определяют действие излучения на биообъекты.
Длина волны ( ) представляет собой наименьшее расстояние между двумя соседними колеблющимися точками одной волны. Зачастую в медицине длину волны указывают в микрометрах (мкм) или нанометрах (нм). В зависимости от длины волны изменяется коэффициент отражения, глубина проникновения в ткани организма, поглощение и биологическое действие лазерного излучения.
Частота характеризует число колебаний, совершаемых за единицу времени, и является величиной обратной длине волны. Как правило, выражается в герцах (Гц). С возрастанием частоты увеличивается энергия кванта света. Различают: собственную частоту излучения (для отдельно взятого генератора лазерных колебаний неизменна); частоту модуляции (в медицинских лазерных установках может изменяться от 1 до 1000 Гц). Также высокую важность несут энергетические параметры лазерного облучения.
Принято выделять три основные физические характеристики дозирования: мощность излучения, энергия (доза) и плотность дозы.
Мощность излучения (поток излучения, поток лучистой энергии, ) – представляет собой полную энергию, которая переносится светом в единицу времени сквозь данную поверхность; средняя мощность электромагнитного излучения, которая переносится через какую-либо поверхность. Как правило, измеряется в Вт или кратных величинах.
Энергетическая экспозиция (доза излучения, ) - это энергетическая облученность лазером за определенный промежуток времени; мощность электромагнитной волны, которая излучается за единицу времени. Измеряется в [Дж] или [Вт*с]. Способность совершать работу является физическим смыслом энергии. Это характерно в том случае, когда работа вносит изменения в ткани фотонами. Биологический эффект светового облучения характеризует энергия. При этом возникает тот же биологический эффект (например, загар), как и в случае с солнечным светом, можно достигнуть при невысокой мощности и длительности экспозиции или высокой мощности и небольшой экспозиции. Полученные эффекты будут идентичны, при одинаковой дозе.
Плотность дозы – энергия, полученная на единицу площади воздействия. Единица измерения в СИ - [Дж/м2]. Также используется представление в единицах Дж/см2, в силу того, что площади, на которые происходит воздействие, обычно исчисляются квадратными сантиметрами.
Вопросы к практическому занятию 2.1:
1. Что такое ширина спектральной линии и чем определяется ее величина?
2. Какая связь между длительностью импульса излучения лазера и шириной его спектральной линии?
3. В чем отличие пространственной и временной когерентности? Связаны ли они между собой?
4. Как можно количественно оценить пространственную когерентность?
5. Чем определяется минимально возможная расходимость лазерного луча?